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Abstract

Fourteen years after Science’s review of sensitivity analysis (SA) methods in 1989 (System analysis at molecular scale, by H. Rabitz) we

search Science Online to identify and then review all recent articles having ‘‘sensitivity analysis’’ as a keyword. In spite of the considerable

developments which have taken place in this discipline, of the good practices which have emerged, and of existing guidelines for SA

issued on both sides of the Atlantic, we could not find in our review other than very primitive SA tools, based on ‘‘one-factor-at-a-time’’

(OAT) approaches. In the context of model corroboration or falsification, we demonstrate that this use of OAT methods is illicit and

unjustified, unless the model under analysis is proved to be linear. We show that available good practices, such as variance based

measures and others, are able to overcome OAT shortcomings and easy to implement. These methods also allow the concept of factors

importance to be defined rigorously, thus making the factors importance ranking univocal. We analyse the requirements of SA in the

context of modelling, and present best available practices on the basis of an elementary model. We also point the reader to available

recipes for a rigorous SA.

r 2005 Elsevier Ltd. All rights reserved.
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1. Sensitivity analysis in the scientific method

Fourteen years after Science’s review on sensitivity
analysis (SA) [1], considerable developments have taken
place in this discipline. As an indicator of the practices
currently used in SA, we have searched Science Online to
identify and review all papers (33) published between 1997
and 2003 having SA as a keyword. In these, we could not
detect application of available good practices (Appendix
A). The works reviewed highlight the importance of SA in
corroborating or falsifying a model-based analysis. Yet all
sensitivity analyses were performed using a one-factor-at-a-
time (OAT) approach, so called as each factor is perturbed
in turn while keeping all other factors fixed at their nominal
value. When the purpose of SA is to assess the relative
importance of input factors in the presence of factors
uncertainty this approach is only justified if the model is
proven to be linear.

The present work aims to discuss the merit and correct
use of model-free SA approaches. Although problem
setting met in modelling are disparate, we demonstrate
that available good practices in SA can be of considerable
general use. The best SA practices are well established
among SA practitioners, among applied statisticians, as
well as in some disciplinary communities (see [2,3] for
chemical engineering; [4] for bio-statistics; [5] for risk
analysis), though not among the scientific community at
large.

Different understanding of SA are used in different
modelling communities, see, e.g. [2,3], [4] and [5] addressed,
respectively, to chemical engineers, bio-statisticians, and
practitioners of risk analysis. Quite often though SA is
identified almost as a mathematical definition, with a
differentiation of the output with respect to the input. This
definition is in fact coherent with a vast set of applications
of SA to, e.g. the solution of inverse problems [1] or the
optimisation of the computation of mass transfer with
chemical reaction problems. This approach to sensitivity
has prevailed in the modelling community, also when the
objective of the analysis was to ascertain the relative
importance of input factors in the presence of finite ranges
of uncertainties. For this reason quantitative measures of
sensitivity, such as SX i

¼ V X i
ðEX�i

ðY jX iÞÞ=VY discussed
in this paper, have been referred to in the literature
importance measures, e.g. [6].

Importance measures such as SXi
have been since long

identified as a best practice, in the model-free sense. In the
literature, the FAST (Fourier Amplitude Sensitivity Test,
see http://users.frii.com/uliasz/modeling/ref/sens_bib.htm
for a bibliography), first introduced in the 1970s, the
Sobol’ method [7], the measures of importance of Iman and
Hora [6], and that of Sacks et al. [8] all coincide with SXi

(see bibliography at http://sensitivity-analysis.jrc.cec.eu.
int/). The bibliographies quoted point the reader to a
wealth of applications of variance-based measures for SA
of complex models in disparate fields.

1.1. A gallery of applications of the best SA practices

All models have use in SA. Applications worked by the
authors include atmospheric chemistry [9,10], transport
emissions [11], fish population dynamics [12] composite
indicators [13], portfolios [14], oil basins models [15],
radioactive waste management [16], geographic informa-
tion systems [17], solid-state physics [18]. Applications
from several practitioners can be found in [19,20], and in
several special issues in the specialised literature, e.g.
[21,22].
It is worth making a few remarks on some of the above-

mentioned applications [13,15]. Most existing composite

indicators are simple weighted averages of selected sub-
indicators [23,86], e.g. as our model (1). The analysis of the
robustness of a composite indicator can involve an SA with
respect to
(I)
 changes in the selection of the underlying indicators,

(II)
 error in the underling indicators,

(III)
 changes in the scaling method,

(IV)
 changes in the aggregation weights [24].
In the main text, (II) and (III) have been investigated via
model (1). An analysis of (I, III, IV) has been run on the
Internal Market Index, a European benchmark of country
performance towards the Single Market [25].
All point (I–IV) have been tackled in [13], to illustrate

how SA can put an environmental debate into track by
showing that the uncertainty in the decision on whether to
burn or dispose solid urban waste depends on the system of
indicators chosen and not on the quality of the available
data (e.g. emission factors). In this example, a hypothetical
Austrian decision maker must take a decision on the issue
of solid waste management, based on an analysis of the
environmental impact of the available options, i.e. landfill
or incineration. The model reads a set of input data (e.g.
waste inventories, emission factors for various compounds)
and generates for each option a composite indicator CI.
CI(x) quantifies how much the option (x) would impact on
the environment. The target function Y, defined as the
logarithm of the ratio between the CI for incineration and
that for landfill, suggests incineration for negative values of

http://users.frii.com/uliasz/modeling/ref/sens_bib.htm
http://sensitivity-analysis.jrc.cec.eu.int/
http://sensitivity-analysis.jrc.cec.eu.int/
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Fig. 1. Uncertainty distribution of the target output function Y. The

bimodal structure of this distribution nicely shows how the choice of what

composite indicator to use drives almost completely the answer of the

model.
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Y and landfill otherwise. Most of the input factors to the
model are uncertain. What makes the application instruc-
tive is that one of the ‘‘factors’’ of the model is a trigger
between two possible composite indicators: the first
proposed by Statistics Finland and the second by the
European Statistical Office (Eurostat). The analysis shows
that the choice of what composite indicator to use drives
almost completely the answer of the model (see Fig. 1). At
the present state of knowledge, the waste management
issue is non-decidable. Resources should not be allocated
for a better definition of the input data (e.g. emission
factors or inventories) but to reach a consensus among the
different groups of experts on an acceptable composite
indicator of environmental impact for solid waste.

The use of trigger variables to select one versus another
conceptualisation of a given system has also been used in
[15], where the trigger drives the choice of an input data set
versus another, each set representing internally consistent
but mutually exclusive parameterisations of the system.

1.2. A role for sensitivity analysis in regulatory prescriptions

Practices addressed in this review also meet a need for
reliable SA which is also acknowledged in recent regulatory
documents. Prescriptions have been issued for SA of
models when these are used for policy analysis. In Europe,
the European Commission recommends SA in the context
of the extended impact assessment guidelines and hand-
book [26].

The EC handbook for extended impact assessment, a
working document by the European Commission, 2002,
states: ‘‘A good SA should conduct analyses over the full
range of plausible values of key parameters and their
interactions, to assess how impacts change in response to
changes in key parameters’’.

The Intergovernmental Panel on Climate Change
(IPCC) has issued a report on Good Practice Guidance
and Uncertainty Management in National Greenhouse
Gas Inventories [27] to the request from the United
Nations Framework Convention on Climate Change
(UNFCCC). Although the report mentions the existence
of ‘‘ysophisticated computational techniques for deter-
mining the sensitivity of a model output to input
quantitiesy’’, the methods employed are merely local.
One of these is the derivative normalised by the input–out-
put standard deviations discussed later. Although the
IPCC background papers [28] advise the reader that [ythe
sensitivity is a local approach and is not valid for large
deviations in non-linear functionsy], they do not provide
any prescription for non-linear models.
The best set of prescriptions on the use of SA in

modelling is likely the forthcoming Draft Guidance on the
Development, Evaluation, and Application of Regulatory
Environmental Models, prepared by The EPA Council for
Regulatory Environmental Modeling (CREM), where one
reads, in a section entitled ‘‘Which Method to Use?’’
‘‘Methods should preferably be able to (a) deal with a
model regardless of assumptions about a model’s linearity
and additivity; (b) consider interaction effects among input
uncertainties; and (c) cope with differences in the scale and
shape of input PDFs; (d) cope with differences in input
spatial and temporal dimensions; and (e) evaluate the effect
of an input while all other inputs are allowed to vary as
well [29], see also [30]. Of the various methods discussed
above, only those based on variance [y] are characterized
by these attributes. When one or more of the criteria are
not important, the other tools discussed in this section will
provide a reasonable sensitivity assessment.’’
These official prescriptions seem to confirm that SA, as

part of the modelling process, has become all the more
urgent due to an increased awareness, among practitioners
and the general public, of the need for quality controls on
the use of scientific models. We touch this issue briefly next.
1.2.1. The critique of modelling

Last decade has witnessed a change in the role of science
in society. This has led to the emergence of the issue of
legitimacy in science, the end of scientists’ purported
neutrality and the need to cope with plurality of frames of
reference and value judgements.
A framework for the production of scientific knowledge

that has policy, as opposed to academia, as an interlocutor,
has been studied by Funtowicz and Ravetz [31–34] and
Gibbons et al. [35]. When models are used for policy
analysis, one must acknowledge that today’s role of
scientists in society is not that of revealing truth, but
rather of providing evidence, be it ‘‘crisp’’ or circumstan-
tial, based on incomplete knowledge, sometimes in the
form of probability, before and within systems of conflict-
ing stakes and beliefs [34]. This is often referred to as the
post-normal science setting where ‘‘facts are uncertain,
values in dispute, stakes high and decisions urgent’’ [32]. In
these contexts, SA can become part of a quality framework
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1A useful example on the meaning of this linking process can be taken

from IPCC [28]: CO2 emissions from energy production will, in most

countries, contribute to a large fraction of total national emissions and in

this respect they can be a key source. However, the uncertainty in emission

factors and activity data is usually low. That means that the contribution

to total uncertainty in CO2 equivalents is low and little is normally gained

by improving the methodology with respect to reducing the total inventory

uncertainty. In most inventories, emissions of N2O from agriculture will

constitute a smaller fraction of total emissions of N2O, but will contribute

significantly to the total uncertainty on CO2 equivalents. Much would be

gained by reducing the uncertainty in this source.
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for model-based assessment becoming an element of
assessment pedigree, see www.nusap.net and [36].

Models, as key element of the scientific method, could
not escape this critique. Scientists frequently caution
themselves against blind reliance in the use of models
[37]. As an example, Science hosted a blunt debate on
subject of system analysis and the issue of quality in the
modelling process [38,39]. Noticeable was also Konikov
and Bredehoeft’s work [40], entitled ‘‘Groundwater models
cannot be validated’’, reviewed on Science in ‘‘Verification,
Validation and Confirmation of numerical models in the
earth sciences’’, by Oreskes et al. [41]. Both papers focused
on the impossibility of model validation. According to
Oreskes et al., natural systems are never closed, and models
put forward as description of these are never unique.
Hence, models can never be ‘‘verified’’ or ‘‘validated’’, but
only ‘‘confirmed’’ or ‘‘corroborated’’ by the demonstration
of agreement (non-contradiction) between observation and
prediction. Scepticism about instrumental use of models is
not confined to academia, see the debate between RIVM
laboratories and the Dutch press [42] concerning the use of
environmental models in the absence of proper and reliable
quality criteria for the assessment of model uncertainties.
What role should uncertainty and SA play to alleviate these
problems?

1.3. Uncertainty and sensitivity analysis

Starting from the critique of modelling, Hornberger and
Spear [37] argue that ‘‘ymost simulation models will be
complex, with many parameters, state-variables and non-
linear relations. Under the best circumstances, such models
have many degrees of freedom and, with judicious fiddling,
can be made to produce virtually any desired behaviour,
often with both plausible structure and parameter values.’’

As a way out of the impasse, the concept of inference’s
robustness has been elegantly expressed by Edward E.
Leamer [43]: ‘‘I have proposed a form of organised SA that
I call ‘‘global SA’’ in which a neighborhood of alternative
assumptions is selected and the corresponding interval of
inferences is identified. Conclusions are judged to be sturdy
only if the neighborhood of assumptions is wide enough to
be credible and the corresponding interval of inferences is
narrow enough to be useful.’’

Furthermore according to Lemons et al. [44] not
recognising the ‘‘value laden’’ nature of the framing
assumptions used in modelling, results in studies appearing
‘‘more factual and value-neutral than warranted’’.

All this shows that a possible use of models is therefore
to map assumptions into inferences, where we use
‘‘inference’’ sensu lato, to indicate a model-based predic-
tion or statement that is relevant to the analysis served by
the model. According to good practice in modelling,
neighbourhoods of alternative assumptions should be
selected and the corresponding interval of inferences
identified, rather than mapping a single set of assumptions
into a single inference. Thus model-based inference would
come in the form of an empirically generated distribution
of values for the prediction of interest. The production of
this distribution is commonly known as uncertainty
analysis, while the process of linking the uncertainty in
the inference to the uncertainty in the assumptions is
known as SA.1

SA can be seen as the extension to ‘‘numerical’’
experiments of experimental design tools [45]. One avenue
of investigation to extend experimental design to numerical
experiments was that of Sacks et al. [8] and Welch et al.
[46], who focused on designing optimal sampling points to
estimate Y at untried points using Bayesian analysis, thus
minimising the number of model evaluations. This line of
investigation is presently pursued by O’Hagan, Oakley and
co-workers [47,48].
Uncertainty and sensitivity analyses are most often run

in tandem, and customarily lead to an iterative revision of
the model structure. The process may happen to falsify the
model based analysis, e.g. demonstrating that the inference
offered by the model is too wide to be of use for decision
[43,44]. In this case SA may offer guidance as to which of
the input assumptions is a better candidate for further
analysis aimed to reduce the uncertainty in the inference.
We detail next some essential requirements for SA to meet
these tasks.
1.3.1. Essential requirements for sensitivity analysis

Computational models of real or manmade systems, as
opposed to concise physical laws, are attempts to mimic
systems by extracting and encoding system features, within
a process that cannot be scientifically formalised [49]. The
practice is motivated by the hope that the model will
produce information that has a bearing (via a decoding
exercise) on the system under investigation. One would
hence expect that an important element of model-based
analysis would be a justification of the encoding process,
e.g. of what was willingly left out. Next, as models do not
lend themselves to an intuitive understanding of the
relationship between what goes into the model, in terms
of factors, laws and structures, and the prediction that
comes out of it, one would expect a mapping of model
assumptions into model inferences (uncertainty analysis).
Finally the modeller should investigate the relative role of
the various assumptions in shaping the inference (SA).
Uncertainty and sensitivity analyses should be performed
iteratively, thus corroborating the encoding process, e.g. by

http://www.nusap.net
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showing that elements left out of the model were non-
relevant (model simplification), as well as providing
guidance for research, e.g. by showing what factors deserve
further analysis or measurement (factors prioritisation).
What requirements should we impose on our SA so that it
can be up to these tasks?

First it is that SA should not be concerned with the
model output per se, but with the question that the model
has been called to answer. To make an example, if a model
predicts contaminant distribution over space and time, the
output of interest for SA should be the total area where a
given threshold is exceeded at a given time, or the total
health effects per unit time. This would depend on which
question the model is trying to answer (about assessing a
pesticide, the feasibility of a chemical plant, setting an
emission threshold, etc.) and on the regulatory require-
ments at hand. Plots of factors importance computed at
different points in space and time would be too many to
look at, making the SA irrelevant or perfunctory. An
implication of this is that models must change as the
question put to them changes. The optimality of a model
must be weighted with respect to the task. According to
Beck [50], a model is ‘‘relevant’’ when its input factors
actually cause variation in the model response that is the
object of the analysis. Model ‘‘un-relevance’’ could flag a
bad model, or a model unnecessarily complex, used to fend
off criticism from stakeholders (e.g. in environmental
assessment studies). As an alternative, empirical model
adequacy should be sought, especially when the model
must be audited. An implication of this is that the merit of
a proposed policy could be challenged in the space of the
policy options. Different possible emission thresholds
could be shown to induce no appreciable variation in the
output of concern, e.g. health effect to population, once all
other sources of uncertainty have been weighted in.

A second requirement of a SA is that all known sources
of uncertainty are properly acknowledged, and that the
analysis acts on them simultaneously, to ensure that the
space of the input uncertainties is thoroughly explored and
that possible interactions (Appendix B) are captured by the
analysis. Some of the uncertainties might be the result of a
parametric estimation, but others may be linked to
alternative formulations of the problems, or different
framing assumptions which might reflect different views
of reality, as well as different value judgements posed on it.
When there are observations available to compute poster-
ior probabilities on different plausible models, then SA
would plug into a Bayesian model averaging (BMA).

Mechanistic models used in many scientific contexts (e.g.
environmental sciences), based on traditional scientific
descriptions of component processes, almost always con-
tain ill-defined parameters and are thus referred to as over-
parameterised models (e.g. [51], p. 487). Accordingly it is
often concluded that the estimation of a unique set of
parameters, optimising goodness of fit criteria given the
observations, is not possible. Moreover, different compet-
ing model structures (different constitutive equations,
different types of process considered, spatial/temporal
resolution, etc.) are generally available that are compatible
with the same empirical evidence [37]. This implies the
unfeasibility of the traditional estimation approach.
The analyst is then referred to the broader concept of

calibration and acceptability, by allowing for, e.g. the
use of qualitative definitions expressed in terms of thresh-
olds, based on ‘‘theoretical’’ (physical, chemical, biolo-
gical, economical, etc.) constraints, expert opinions,
legislation, etc.
In practice, we give up any attempt to find a well-defined

optimum, but try to characterise in a compact and readable
way the combinations of all model parameters/hypotheses/
structures that drive the model to a ‘‘good’’ behaviour.
This implies the analysis of a multidimensional function

with, possibly, multiple optima and high order interactions.
Calibration procedures involve Monte Carlo simulation

analyses, which can be divided into two big classes: Monte
Carlo filtering (MCF) and Bayesian analysis.
Both approaches entail an uncertainty analysis followed

by a SA, which assumes now a peculiar and critical value.
In fact, the scope of SA is not only to quantify and rank in
order of importance the sources of prediction uncertainty,
but, which is much more relevant to calibration, to identify
the elements (parameters, assumptions, structures, etc.)
that are mostly responsible for the model realisations in the
acceptable range [52].
Bayesian analysis is usually implemented by the so-called

BMA [53,54] is an approach to modelling in which all
possible sources of uncertainty are taken into account
(model structures, model parameters and data uncertainty)
based on Bayesian theory.
SA can be of great help in characterising the properties

of the posterior distribution in a compact way, allowing the
identification of which input factors (model parameters,
structures or hypotheses) or which combinations of them
are mostly controlled by data and hence are mostly
responsible for good model behaviour. An example is
given next. A combination of BMA and SA applied to time
series modelling is in [55].
Another way for a SA to become irrelevant is to have

different tests thrown at a problem, and different factors
importance rankings produced without clue as to what to
believe. To avoid this, a third requirement for SA is that the
concept of importance be defined rigorously before the
analysis. In this article we show how this can be achieved
by referring to the ‘‘model simplification’’ and ‘‘factor
prioritisation’’ tasks just described.
It is also important that uncertainty and SA be used in

the process of model development, prior and within model
use in analysis. Once an analysis has been produced, its
revision via SA by a third party is not something most
modellers would willingly submit to.
Properly executed, a SA can gauge model adequacy and

relevance, identify critical regions in the space of the inputs,
discover factors’ interactions, establish priorities for
research, and simplify models. These analyses may be part
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of a model’s pedigree [26,36]. What tools would meet the
requirements outlined so far?

2. The methods

We present the methods via a simple example, with a
possibly self-evident sensitivity pattern, in order to allow a
comparison between methods’ prediction and the reader’s
expectation. The example is a simple linear model2

Y ¼
Xr

i¼1

OiZi, (1)

where Y is the output of interest, Zi are the uncertain input
factors and Oi are constant coefficients. Zero-centred
normal (see Appendix B for definitions) distributions are
assumed for the Zi’s, independent from one another:

Zi�Nðz̄i; sZi
Þ; z̄i ¼ 0; i ¼ 1; 2; . . . ; r. (2)

We also assume sZ1
osZ2

o � � �osZr , and O14O24
� � �4Or. From (1) and (2), Y results normally distributed

with parameters ȳ ¼
Pr

i¼1Oi z̄i, sY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
i¼1O

2
i s

2
Zi

q
.

An SA of model (1–2) should tell us something about the
relative importance of the uncertain factors Zi in determin-
ing the output of interest Y.

According to the most widespread practice (Appendix
A), the way to do this is by computing derivatives, i.e.
Y 0Zi
¼ qY=qZi. Y 0Zi

can be computed using an array of
different analytic, numeric or coding techniques [2]. For
model (1–2) Y 0Zi

¼ Oi, independently of sZi
. The order of

importance of our factors based on Y 0Zi
would then be

Z14Z24 � � �4Zr, which is at odd with our expectation
that the factors’ standard deviation should also play a role
in the uncertainty in Y. We would suspect that factor with
a very large sZi

could happen to be the most important
factor even if its Oi were not the largest.

An available practice is a normalisation of the derivatives
by the standard deviations, i.e. Ss

Zi
¼ ðsZi

=sY ÞðqY=qZiÞ. For
model (1–2) Ss

Zi
¼ OiðsZi

=sY Þ. Note that while Y 0Zi
is truly

local in nature, as it needs no assumption on the range of
variation of factor Zi, Ss

Zi
needs such assumption, so that Ss

Zi

is a hybrid local–global measure. Recalling that for model

(1–2) sY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
i¼1O

2
i s

2
Zi

q
, i.e.

Pr
i¼1ðO

2
i s

2
Zi
=s2Y Þ ¼ 1, then for

this model
Pr

i¼1 Ss
Zi

� �2
¼ 1, i.e. the squared Ss

Zi
give how

much each individual factor contributes to the variance of the
output of interest. If one is trying to assess how much the
uncertainty in each of the input factors will affect the
uncertainty in the model output Y, and if one accepts the
variance of Y to be a good measure of this uncertainty, then
the squared Ss

Zi
seem to be a good measure, that reconciles

the SA with our expectation. The factor with a large sZi

could this time end up as the most important. The Ss
Zi
2In [52] this example was presented as a portfolio model, but it could as

well be seen as a simple physical model, e.g. a composite indicators made

up of a linear combination of weighed standardised variables [23,24].
measure is also recommended by some existing guidelines,

albeit with caveats [27]. The relation s2Y ¼
Pr

i¼1 Ss
Zi

� �2
is not

general; it only holds for linear models. For this reason we
find unwarranted any use of OAT approaches with models
other than strictly linear (see also the examples in this section
and in Appendix F). The almost totality of sensitivity
analyses met in the literature, not only Science’s ones
(Appendix A), are of an OAT type [59].
To treat non-linear models we must abandon derivatives.

A Monte Carlo experiment on our model demands the
generation of a sample matrix

M ¼

z
ð1Þ
1 z

ð1Þ
2 . . .

z
ð2Þ
1 z

ð2Þ
2 . . .

. . . . . . � � �

z
ðNÞ
1 z

ðNÞ
2 . . .

zð1Þr

zð2Þr

� � �

zðNÞr

0
BBBB@

1
CCCCA.

M is composed of N rows, each row being a trial set for the
evaluation of Y. Being the factors independent, each
column can be generated independently from the marginal
distributions specified in (2) above. Computing Y for each
row in M results in the output vector
y ¼ ½yð1Þ; yð2Þ; . . . ; yðNÞ�T. Feeding both M and y into a
least-squares algorithm, the analyst will obtain a model of
the form yðlÞ ¼ b0 þ

Pr
i¼1bZi

z
ðlÞ
i . Comparing this with (1) it

is easy to see that b0 ¼ 0; bZi
¼ Oi; i ¼ 1; 2; . . . ; r (if

NXrþ 1). Being dimensioned, the bZi
coefficients are not

used for SA. The practice is to compute the standardised
regression coefficients (SRCs), defined as bZi

¼ bZi
sZi

=sY .
Hence for model (1–2), bZi

¼ Ss
Zi
. For linear models and

independent factors, ðbZi
Þ
2 provide the fraction of the

variance of the model due to each factor. For non-linear
models, one has to consider the model coefficient of
determination Ry

2A[0,1] (see Appendix B for definitions),
which represents the fraction of the model’s variance
accounted for by the regression equation. If this is not too
low, e.g. R2

yX0:7, we can still use the bZi
for SA with the

understanding that it will only explain 70% of the model’s
variance.
While Ss

Zi
corresponds to a variation of factor Zi all

other factors being held constant, the bZi
offers a measure

of the effect of factor Zi that is averaged over the N

possible values of the other factors. This averaging is
essential for non-linear models. Note that for a model non-
monotonic in Zi we could have zero bZi

even if Zi were to
be an influent factor (Appendix B), as we shall show in a
moment.
In order to treat models of an unknown degree of

linearity and/or monotonicity, imagine to fix factor Zi at its
midpoint z̄i, making it a constant. How much would this
change the variance of Y ? We indicate the conditioned
variance as VZ�i

ðY jZi ¼ z̄iÞ, where the variance is taken
over Z�i, a (r�1) dimensional vector of all factors but Zi.
Comparing the input factors based on VZ�i

ðY jZi ¼ z̄iÞ’s,
e.g. by saying that the smaller VZ�i

ðY jZi ¼ z̄iÞ, the most
important Zi, would make the comparison dependant upon
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Fig. 2. Sensitivity analysis for second and third order groups of model (1).
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where the factors are fixed. Furthermore for non-linear
models, fixing a factor might actually increase the variance
instead of reducing it, depending upon where it is fixed. To
avoid this, the practice is to average VZ�i

ðY jZi ¼ z̄iÞ over
all possible values of Zi obtaining EZ�i

ðVZ�i
ðY jZiÞÞ. A

known result from textbook algebra is that:

V Y ¼ EZi
ðVZ�i

ðY jZiÞÞ þ V Zi
ðEZ�i

ðY jZiÞÞ, (3)

where VZi
ðEZ�i

ðY jZiÞÞ is called the main effect of Zi on Y,
and EZi

ðVZ�i
ðY jZiÞÞ the residual. Given that

V Zi
ðEZ�i

ðY jZiÞÞ is large if Zi is influential, its ratio to the
unconditional variance VY is used as a measure of
sensitivity,

SZi
¼

VZi
ðEZ�i

ðY jZiÞÞ

VY

, (4)

which is nicely scaled in [0,1]. For model (1–2), one finds
SZi
¼ ðSs

Zi
Þ
2
¼ b2Zi

, due to the fact that the model is linear
and the factors independent [52]. A nice property of the
SZi

’s when applied to (1–2) is that
Pr

i¼1Szi
¼ 1. The same

was true for the b2Zi
when applied to (1–2). Yet propertyPr

i¼1Szi
¼ 1 holds for additive models (Appendix B), whilePr

i¼1b
2
Zi
¼ 1 only holds for linear models. SZi

is a good
model-free sensitivity measure, and for all models it gives
the expected reduction in the variance of the output that
one would obtain if one could fix an individual factor Zi.
For non-additive models

Pr
i¼1SZi

o1, as we illustrate next.
To this effect, we now let the coefficients Oi in model (1)
become uncertain as well, e.g. 3

Oi�Nðōi;soi
Þ; with ōia0; i ¼ 1; 2; . . . ; r. (5)

The model (1,5) has now k ¼ 2r input factors
X � ðO1;O2; . . . ;Or; Z1;Z2; . . . ;ZrÞ, and we shall use the
symbol Sj when we do not need to distinguish between SZi

,
SOi

.
Fig. 2 and Tables 1 and 2 show a SA for r ¼ 3 and the

following parameter values:

r ¼ 3 sZ1
¼ 1 ō1 ¼ 3 sO1

¼ 3

k ¼ 6 sZ2
¼ 3 ō2 ¼ 1:5 sO2

¼ 2

sZ3
¼ 5 ō3 ¼ 1 sO3

¼ 1:5

The SZi
; SOi

; i ¼ 1; 2; . . . ; r coefficients have been esti-
mated using Monte Carlo based methods.

The Si and higher order terms have all been computed
using [15], that is an extension and computational improve-
ment of the method of Sobol’ [7]. In general, the Sobol’
method has a computational cost for each index of
N ¼ 1024. In [15], which uses in an optimal way some
symmetry properties of the Sobol’ sample design, the total
cost for the result in Figs. 2 and 3 is reduced to about 10,000
runs. For the test case in (Appendix F) next the cost was
about 3 times as much. The cost for the Morris method was
of 70 runs. A free software to perform all calculations
reported in this paper can be freely downloaded from
3The choice ōi ¼ 0; i ¼ 1; 2; . . . ; r would have generated a model

without additive component, i.e. Sj ¼ 0; 8j.
www.jrc.cec.eu.int/uasa/. Ongoing research aims to accelerate
the computation of the measures [15,48,56]. The measures can
also be computed via High Dimensional Model Representa-
tions, an approach to model approximation and SA by
Rabitz and co-workers ([19, p. 199; 21]; see also http://
www.princeton.edu/�hrabitz/pubsubjects.html#hdmr).
The columns relative to the Y 0j and OAT measures

vindicate our statements about the unreliability of these
methods even for the simple example at hand. Both measures
mistake Z1 for the most important factor. ðSs

j Þ
2 and b2j agree

with one another and with the Sj by giving zero importance to
the Oi coefficients. The agreement between [ðSs

j Þ
2, b2j ] with Sj

is not general, as a slight modification of the model (1,5) can
easily show (see result s of the modulus version (9) below in
Fig. 3 and Tables 3 and 4).
The Sj’s no longer add up to one, as the model has become

non-additive. We can recover the missing fraction of variance
by computing the sensitivity measure on groups of factors,
such as, e.g. Sc

Z2Z3
� V Z2Z3

ðEX�Z2Z3
ðY jZ2;Z3ÞÞ=VY . We see

in Fig. 2 that Sc
Z2Z3
ffi 0:32ffi SZ2

þ SZ3
. Computing

instead Sc
O3Z3

yields Sc
O3Z3
¼ 0:5194SO3

þ SZ3
¼ 0:177.

We now indicate as SO3Z3
(no superscript c) the difference

SO3Z3
¼ Sc

O3Z3
� SO3

� SZ3
and so on for other combina-

tions of factors (Fig. 2). All effects of the type
SZiZl

;SOiOl
;SZiOl

; ial are null for model (1,5). When the
combined effect of two factors, i.e. Sc

O3Z3
, is greater than the

sum of the individual effects SO3
and SZ3

, then this extra
effect SO3Z3

is the interaction (or two-way, or second order)
effect of O3;Z3 on Y. Sc

O3Z3
captures instead all effects

including factors O3;Z3. We see from Fig. 2 that if we sum all
first order effects with all second order ones we obtain 1, i.e.
all the variance of Y is accounted for, because model (1,5) has
interactions only up to the second order. Note that the effect
of the Oi is only via interactions, to which the Sj coefficients
are blind.
For a system with k factors there may be interaction

terms up to the order k, i.e. [7]:X
i

Si þ
X

i

X
j4i

Sij þ
X

i

X
j4i

X
l4j

Sijl þ � � � þ S12...k ¼ 1.

(6)

http://www.jrc.cec.eu.int/uasa/
http://www.princeton.edu/~hrabitz/pubsubjects.html#hdmr
http://www.princeton.edu/~hrabitz/pubsubjects.html#hdmr
http://www.princeton.edu/~hrabitz/pubsubjects.html#hdmr
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Table 1

Main effects and total effects for model (1,5), compared to other sensitivity measures

FP setting FF setting

Sj b2j (R2 ¼ 0:35) OAT Y 0j ðSs
j Þ

2 STj+ranking mj+ranking

Z1 0.066 0.061 3 3 0.060 0.1198 5 7.3482 5

Z2 0.147 0.136 1.5 1.5 0.135 0.3618 2 13.7051 2

Z3 0.173 0.164 1 1 0.167 0.5234 1 16.9067 1

O1 0.001 0 0 0 0 0.0569 6 7.1508 6

O2 0 0 0 0 0 0.2202 4 9.2131 4

O3 0.004 0 0 0 0 0.3413 3 12.1134 3

Table 2

Relevant higher order sensitivity indices for model (1,5)

Sc
Z1O1

0.1188 Sc
Z1Z2

0.214 SZ ¼ Sc
Z1Z2Z3

0.3865

Sc
Z2O2

0.3610 Sc
Z1Z3

0.239 SO ¼ Sc
O1O2O3

0.0054

Sc
Z3O3

0.5193 Sc
Z2Z3

0.320 SZO ¼ SZ1O1
þ SZ2O2

þ SZ3O3
0.608

Sum 0.9991 Sum 0.773 Sum 1
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The fact that for model (1,5), all terms above the second
order are zero is convenient. Already for the present
moderate value of k ¼ 6, the summands in (6) are very
numerous to look at. One would have 6 first order terms,
6

2

� �
¼ 15 second order,

6

3

� �
¼ 20 third order,

6

4

� �
¼

15 fourth order,
6

5

� �
¼ 6 firth order, and last term of

order k. This makes as many as 2k � 1 ¼ 26 � 1 ¼ 63. To
overcome this difficulty, several practitioners have since
long suggested [19,52] to use the total effect terms. Imagine
that we substitute Xj with X�j in the formula for the first
order effect of Xj, obtaining VX�j

ðEXj
ðY jX�jÞÞ=V Y . By

definition this is the first order effect of X�j, which can be
easily demonstrated (Appendix C) to equal the sum of all
terms in development (6) that do not include Xj. Hence
STj ¼ 1� VX�j

ðEXj
ðY jX�jÞÞ=VY equals the sum of all

terms that do include Xj. We can exemplify this with
factor Oi. STOi

� 1� VX�Oi
ðEOi
ðY jX�Oi

Þ=V Y reduces for

model (1,5) to STOi
¼ SOi

þ SOiZi
, i.e. the sum of all non-

zero terms that do include Oi. Because of (3) we can also
write: STj ¼ EX�j

ðVX j
ðY jX�jÞÞ=VY .

Sj, STj for model (1,5) are given in Table 1. As one might
expect the sum of the first order terms is less than one, the
sum of total effects is higher than 1. If one can compute all
the k Sj terms plus all the k STj ones, then a fairly complete
and parsimonious description of the model in terms of its
global SA properties is obtained.

A further simplification of the analysis can be ac-
hieved by partitioning the model inputs in groups. In
our model (1), for instance, it would be fairly natural to
write:

SX þ SZ þ SX;Z ¼ 1, (7)
where X ¼ O1;O2; . . . ;Or, Z ¼ Z1;Z2; . . . ;Zr (Fig. 2,
Table 2). Or, we could show the results from model (1) asXr

i¼1

SAi
¼ 1, (8)

where Ai ¼ ðOi;ZiÞ. Different ways of grouping the factors
might give different insights to the owner of the problem,
e.g. formulation (8), if model (1,5) were a composite
indicator, would give the overall uncertainty brought by a
sub-indicator, including its value Zi and weight Oi

(Appendix C).
The indices Sj, STj have an interpretation in terms of

framing of the SA. As mentioned in Section 1, if one
may obtain different ordering of factors’ importance
using different methods, why bothering doing it? Impor-
tance is not per se a mathematical concept. Hence
‘‘importance’’ should be defined at the stage of framing
the analysis, possibly in a way that is meaningful to its
users. In [16,52] we discuss settings applicable to different
contexts for SA.

2.1. Factors’ prioritisation (FP) setting

The objective of SA is here to identify the factor which, if
determined (i.e. fixed to its true, albeit unknown, value),
would lead to the greatest reduction in the variance of the
target output Y, and so on for the second most important
factor etc., till all factors are ranked.
The concept of importance is thus precised, and linked to

a reduction of the variance of the target function. In
general, one would not be able to meet the objective of
Setting FP, as this would imply knowing what the true
value of a factor is. The purpose of Setting FP is to allow a
rational choice under uncertainty. It is clear from the
discussion so far that Sj is the appropriate measure for this
setting. Note that this approach is blind at model’s
interactions [16,52]. The implication of this for model
(1,5) is that only the Zi factors can be candidate for factor
prioritisation.

2.2. Factors’ fixing (FF) setting

This is concerned with model simplification, by fixing
non-influential factors [7]. The objective of this setting,
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Table 3

Main effects and total effects for model (9), compared to other sensitivity measures

FP setting FF setting

Sj+ranking b2j +ranking (R2 ¼ 0:12) OAT Y 0j
a

ðSs
j Þ

2 a STj+ranking mj+ranking (5th–6th shifted)

Z1 �0.001 6 0 6 0 — — 0.173 5 5.67 6

Z2 0.094 3 0 5 0 — — 0.408 3 8.06 3

Z3 0.108 2 0 4 0 — — 0.549 1 11.73 1

O1 0.013 5 0.007 3 0 — — 0.104 6 6.59 5

O2 0.088 4 0.045 2 0 — — 0.331 4 7.81 4

O3 0.145 1 0.065 1 0 — — 0.457 2 9.54 2

aLocal derivatives undefined for absolute values when z̄j ¼ 0.

Table 4

Higher order relevant sensitivity indices for model (9)

Sc
Z1O1

0.036 Sc
Z1Z2

0.107 SZ ¼ Sc
Z1Z2Z3

0.268

Sc
Z2O2

0.227 Sc
Z1Z3

0.128 SO ¼ Sc
O1O2O3

0.222

Sc
Z3O3

0.406 Sc
Z2Z3

0.236 SZO 0.510

Sum 0.669 Sum 0.471 Sum 1
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Fig. 3. Sensitivity analysis for second and third order groups of model (9).
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which could also be labelled as ‘‘screening’’, is to identify
the factor or the subset of input factors that we can fix at
any given value over their range of uncertainty without
reducing significantly the output variance. If such set is
identified, this means that the remaining factors explain
practically all the unconditional variance.

The non-influential factors can be fixed anywhere in their
range of variation without significant loss of information in
the model. If one has prior beliefs about the importance of
input factors, this setting can be used to prove or disprove
a given model representation. It can be seen that STj ¼ 0 is
a necessary and sufficient condition for Xj to be totally
non-influent (Appendix C). The method of Morris [57] for
factors’ screening, which provides a factors’ ranking very
close to STj, can also be used for this setting [52] when the
model is expensive to evaluate, as this method demands a
smaller sample size (Appendix D). Setting FF is sensitive to
factors’ interactions, e.g. it shows (Table 1), that only o1

can be reasonably fixed in model (1,5).
To better clarify the merit of the model-free measures Sj,

STj within the FP and FF settings, let us now consider the
slightly more complicated modulus version of (1):

Y ¼
Xr

j¼1

ZjOj

�����
����� (9)

with parameter values:

r ¼ 3 sZ1
¼ 1 ō1 ¼ 3 sO1

¼ 3

k ¼ 6 sZ2
¼ 3 ō2 ¼ 1:5 sO2

¼ 2

sZ3
¼ 5 ō3 ¼ 1 sO3

¼ 1:5
We can see in Fig. 3 and Tables 3 and 4 that now the
difference between variance based indices on one hand and
OAT, local or b2j indices on the other, becomes crucial.
While in the original model version (1,5) the b2j ’s and the
ðSs

j Þ
2’s gave the same information as the Sj’s, in this case

the FP setting can be correctly addressed by using the Sj’s.
The FF setting can only be dealt using the STj’s or the mj’s.
Sometimes practitioners want to analyse input factors

with respect to their capacity to produce realisation of the
model output Y within a given region, e.g. between bounds,
or above a threshold. This leads to a Factors’ mapping

(FM) setting, whose question is ‘‘which factor is mostly
responsible for producing realisations of Y in the region of
interest?’’ This can be studied by MCF [58], whereby
realisations of Y produced by plain Monte Carlo are
classified, e.g. as acceptable or non-acceptable. In this way
y ¼ ½yð1Þ; yð2Þ; . . . ; yðNÞ�T is split into two sub-samples, and
likewise each of the input samples. Comparing the
empirical distribution of the unfiltered realisation versus
the filtered ones for each input factor, the factors
importance in determining the realisations of interest can
be gauged (Appendix E). The example treated so far is of a
‘‘prognostic’’ nature. We use information in the model to
make inference on reality. For a ‘‘diagnostic’’ use of
models, where we use reality to make inference about the
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structure of the model, such as, e.g. in calibration settings,
SA can likewise be valuable, especially when largely
overparametrised principle-based models are compared
against available evidence. An application is in Appendix
F, where we show how an overparametrised six-factor
model can be nailed down to a two-factor model using SA.
We are unaware of alternative, more succinct approaches
to this problem.

3. Conclusions

We have presented a few good practices for a defensible
SA,4 based on requirements such as the choice of a
synthetic output variable, the simultaneous analysis of all
uncertainties, and a rigorous definition of importance. In
summary, if a scalar objective function Y is available,
whose variance can be taken as the subject of the analysis,
then variance based measures offer a coherent strategy,
that is agile (the owner of the problem can decide on if and
how to group the factors), model free (also works for non-
monotonic, non-additive models), and reduces to SRCs for
linear models. This practice lends itself to intuitive
interpretations of the analysis, such as that in terms of
factors’ prioritisation or fixing. None of these properties is
shared by the OAT methods. We have also linked the
emergence of SA as a discipline to the critique of
modelling. In most controversial debates where science
plays a role, the negotiation will take place in the space of
the uncertainties [37,43,45]. In these contexts SA helps in
providing evidence that is defensible, transparent in its
assumptions and comparable against and across different
framing assumptions [31–35].

Appendix A. Sensitivity analysis in Science: a review

Even if there are examples of good practices in the
specialised SA literature (discussed in the introduction), as
an indicator of the status quo of the practices still used in
SA in the modelling community, we have reviewed all
papers published in the last 6 years on Science where SA is
used to complement model-based analysis (33 papers or
letters with a keyword search ‘‘sensitivity analysis/ana-
lyses’’). In general, it appears that the need of SA to
support and validate model inference is universally
acknowledged, and in most cases partially addressed, but
available best SA practices are not applied [59], with the
partial exception of [60]. The Monte Carlo approach
allowing for the simultaneous propagation of the entire
input distributions is used only for uncertainty analysis
purposes, while for SA, the methods applied are the local
derivatives or the one-at-a-time approach (OAT), which is
sometimes wrongly applied also for uncertainty analysis
purposes. Another problem is that SA is usually performed
4We have eluded for brevity the treatment of non-independent input

factors. In [52] we show how both settings FP, FF can be dealt with using

Sj, STj when the factors are not independent.
only for a subset of parameters (sometimes only one as in
[61–63]) selected on the basis of the modeller’s prior
knowledge of the model. This impedes, for example, some
possible misspecifications to emerge, e.g. when a high
sensitivity is detected for a parameter which, according to
the modeller’s intentions, should be irrelevant for the
model behaviour. More specifically:
(I)
 The link between sensitivity and robustness is well
established, i.e. modellers agree that an inference
becomes stronger if it can be demonstrated that it is
insensitive to uncertainties. If the analysis is limited to
an Uncertainty Analysis [61–63,64–75], the imple-
mentation of a plain error propagation of all
uncertainty sources simultaneously with a Monte
Carlo approach is intuitive and straightforward and
should not imply methodological problems [64,69,71].
However, in the majority of cases [61–68,70,72,73],
the analysis is still done perturbing by fixed intervals
and OAT the model parameters which is unacceptable
because OAT does not allow for co-operative effect of
the various uncertainty sources to appear, making the
robustness analysis indefensible, apart from the
simple case of linear models.
(II)
 When, after the error propagation in robustness
analysis, the analyst is interested in ranking the
importance of various sources of uncertainty, i.e.
when the true SA is performed [65,71,76–81], the
OAT approach is always applied. This would only be
justified for purely linear models and, as we have
argued in the text this approach can be grossly
misleading, and the model free methods should be
used instead. The only exception is [60], where partial
ranked correlation coefficients (PRCCs) are used to
assess relative importance of input factors. Even with
the limitation of correlation/regression based meth-
ods, the application of a correlation/regression based
technique is here quite appropriate, and at least this is
the only one example of a global SA method applied.
In two cases [78,79], the error propagation implies a
falsification of the inference (i.e. uncertainty impede a
clear answer and robustness cannot be demonstrated),
and parameters are ranked by importance to identify
which sources of uncertainty have to be reduced in
future work to allow a clear answer. These two latter
papers show a conceptually sound use of SA for
analysing the robustness of an inference and subse-
quently identifying the main sources of uncertainty.
However, also in such papers the practice is wanting,
as a simple OAT approach has been taken.
(III)
 In some studies sensitivity is a property of a model
[66,68,82,83]. A model is defined ‘‘sensitive’’ when the
behaviour of a state variable (e.g. a concentration of a
chemical or biological element) is highly affected by
small variations in other state variables (e.g. tempera-
ture, pressure, etc.). Partial derivatives, i.e. local SA,
are used to assess this property. We can include in this
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framework the ‘‘sensitivity’’ studies in the Global
Change community [75]. Sensitivity in the context of
inverse problems in dynamical models, to track
dynamical state variables in the input that can cause
specified variations in the dynamical output state
variables, can also be found in [84].
(IV)
 SA is sometimes considered in estimation/calibration
problems, in which the model fit is evaluated in an
OAT fashion [61,65,85]. In [85] SA is used to calibrate
an over-parameterised model, where the amount of
data is insufficient to estimate the whole set of model
parameters (kinetic constants). In such a case, a
Monte Carlo study is performed to identify the ranges
of parameter values allowing a good fit. A SA to
adding explanatory variables can be found [86] as well
as a case of scenario analysis, which is referred to as
SA [87].
(V)
 SA is also used as an argument to confute or criticise
published model based inferences [86,88–90] or
support the defence of model results in technical
comments [91,92]. Also in such cases the SA is done
using the OAT approach or SA is just an uncertainty
analysis.
Appendix B. Some useful definitions.

Normal distribution. If X is normally distributed with
parameters m and s the probability of X taking a value
between x and x+dx is ð1=

ffiffiffiffiffiffi
2p
p

sÞe�1=2ðx�m=sÞ
2
dx.

Additive model. A model Y ¼ f ðZ1;Z2; . . . ;ZkÞ is
additive if f can be decomposed as a sum of k functions
fj, each of which is only function of the relative factor Zj.
As trivial examples, Y ¼

P
iZ

2
i is non-linear, but additive,

while Y ¼
Q

iZi is non-linear and non-additive.
Monotonicity. The relationship between Y and an input

factor Z is monotonic if the curve Y ¼ f ðZÞ is non-
decreasing or non-increasing over all the interval of
definition of Z. A model with k factors is monotonic if
the same rule applies for all factors. In SA of numerical
models, this can be verified by Monte Carlo simulation
followed by scatter-plots of Y versus each factor at a time.
Note that the bZi

’s can fail grossly for non-monotonic
models, such as, e.g. Y ¼

P
ie
�Z2

i or Y ¼
Q
ð1=Z2

i � 1Þ.
For these models, if we kept the factors’ distribution as
from (2), the bZi

would be zero for all factors Zi, while the
factors would all be influent instead.

Model coefficient of determination. The model coefficient
of determination is R2

y ¼
PN

i¼1ðŷ
ðiÞ
� ȳÞ2=

PN
i¼1ðy

ðiÞ � ȳÞ2,
where ŷðiÞ is the regression model prediction.

Standardised regression coefficients. The b̂Zi
provide a

regression model in terms of standardised variables
~y ¼ ðŷ� ȳÞ=sY ; ~zi ¼ ðzi � z̄iÞ=sZi

, i.e. ~y ¼
Pr

i¼1b̂Zi
~zi,

where ŷ is the vector of regression model predictions. The
bZi

’s tell us how much this fraction of the variance can be
decomposed according to the linear functions of the input
factors, leaving us ignorant about the rest. The bZi

’s are a
progress with respect to the Ss
Zi
; they can be always

computed, also for non-linear models, as well as for models
with no analytic representation (e.g. a computer pro-
gramme that computes Y).

Appendix C. Sensitivity analysis by groups and total

sensitivity indices

As discussed in the text, the variance of model (1), can
be decomposed as SX þ SZ þ SX;Z ¼ 1, where, Z ¼

Z1;Z2; . . . ;Zr. The information we obtain in this way is
clearly lower than that provided by the Sj and STj. We see
that the effect of the X set at the first order is zero, while
the second order term SX,Z is 0,61, so it is not surprising
that the sum of the total effects is 1,61 (the 0,61 is counted
twice): STX ¼ SX þ SX;Z, STZ ¼ SZ þ SX;Z. Now all that
we know about the sensitivity pattern of model (1) is the
combined effect of all the coefficients X ¼ O1;O2; . . . ;Or,
that of all the factors Z ¼ Z1;Z2; . . . ;Zr, and their
interaction. Note that if we decompose the variance of
model (1) as

Pr
i¼1SAi

¼ 1, where Ai ¼ ðOi;ZiÞ, we do not

need summands such as
Pr

j¼i
j4i

SAiAj
because the problem has

returned additive, given that the interactions are ‘‘within’’
the groups Ai.
The total effect term can also be understood in terms of

groups. Imagine we group factors into Xi and X�i. Then
Si þ S�i þ S�i:i ¼ 1, where S�i ¼ VX�i

ðEXi
ðY jX�iÞÞ=VY ,

and

STi ¼ 1� S�i ¼ Si þ S�i;i ¼ EX�i
ðVX i
ðY jX�iÞÞ=VY

equals the total effect of Xi, i.e. its first order term plus all
interactions between Xi and X�i.
As said in the main text, the condition

EX�i
ðV Xi
ðY jX�iÞÞ ¼ 0 is both necessary and sufficient for

factor Xi to be non-influent, which makes the index STi

suited for fixing non-influential factors. A demonstration
is the following. If Xi is non-influent, then EX�i

ðV Xi
ððY jX�iÞÞ ¼ 0 because fixing ‘‘all but Xi’’ results in

the inner variance over Xi to be zero (under that hypothesis
the variance of Y is driven only by non-Xi), and this
remains zero if we take the average over all possible values
of non-Xi. As a result STi is zero if Xi is totally non-
influential. Conversely, EX�i

ðV Xi
ððY jX�iÞÞ ¼ 0, implies

that VX i
ðY jX�iÞ is identically zero for any possible value

of X�i, as a variances can only take positive values and
hence we cannot achieve a zero mean by averaging
VX i
ðY jX�iÞ of opposite signs at different points. This

implies that Y is either a constant or only depends from
X�i. This completes our demonstrations.
To dispel the fear that Si and ST

i are too complex
statistics to estimate, we explain below how they can be
computed when the input factors are independent.
1.
 Choose a base sample dimension N.

2.
 Generate a Monte Carlo sample of dimension 2N

of the input factors and define two matrices of
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data, each containing half of the sample (ordered by
column):
xk

x2

xk

xix1

xix1

xix1

xk

x2

xk

xix1

xix1

xix1

B =

… … … …

…

…

…

…

…

…

… ……

…

… … … …

(1)

(2)

(N)

(1)

(2)

(N)

(1)

(1)

(N)

(N+1)

(N+2)

(2N)

(N+1)

(N+2)

(2N)

(N+1)

(N+1)

(2N)
Define a matrix Mi formed by all columns of A, except
3.

the ith column which is taken from B and a matrix MTi,
complementary to Mi, formed with the ith column of A

and with all the remaining columns of B:
xk

xk

x2

x1

x1

xi

xi

xi

x1

=

xk

x2

xkxi

xi

xi

x1

x1

x1

MTi =

…

…

…

… … …

…

…

…

……

…

… …… … … …

(1)

(2)

(N)

(N+1)

(N+2)

(2N)

(1)

(1)

(N)

(N+1)

(N+2)

(2N)

(1)

(2)

(N) (2N)

(N+1)

(N+1)
Compute the model output for all the input values in the
4.

sample matrices A, Mi and MTi, obtaining three column
vectors of model outputs of dimension N� 1: y ¼ f ðAÞ,
y0 ¼ f ðMiÞ, y

0
T ¼ f ðMTiÞ.
5.
 The sensitivity indices are hence computed based on
scalar products of the above defined vectors of model
outputs. First define the quantities:
6.

U ¼

1

N

XN

j¼1

yðjÞy0
ðjÞ; UT ¼

1

N

XN

j¼1

yðjÞy0
ðjÞ
T ,
7.

f 0 ¼ ð1=NÞ

XN

j¼1

yðjÞ ðThe meanÞ,

V ¼ ð1=NÞ
XN

j¼1

yðjÞ
2
� f 2

0 ðThe total varianceÞ,

then,
8.
 Vi ¼ V Xi
½EX�i

ðY jX iÞ� ¼ U � f 2
0,

V�i ¼ VX�i
½EXi
ðY jX�iÞ� ¼ UT � f 2

0

and finally
Si ¼
V i

V
; STi ¼ 1�

V�i

V
.

As shown, the computation of Si and ST
i involves very

easy matrix algebra (scalar products).
Appendix D. The method of Morris

The method of Morris is an efficient and easy to
implement screening tool. It operates at lower sample size
then the variance based measures. Like in experimental
design, when using Morris each factor is sampled at a small
number (e.g. 2, 3, 4) of selected values, called levels. The
distance between two consecutive levels is D, i.e.
ljþ1 ¼ lj þ D. For each factor, a number of one-step
differences are estimated along the various axes. For
instance, for factor Xj one computes at different sample
points Xi ¼ ðX i

1;X
i
2; :::;X

i
j ; :::;X

i
kÞ, i ¼ 1,y, N0, differences

such as

EEi
X j
¼ ðY ðXi þ DejÞ � Y ðXiÞÞ=D,

where ðXi þ DejÞ is equal to vector Xi apart for its jth
component that has been increased by D, i.e. which has
been sampled at the successive level. Values of EEi

Xj
over

different points i ¼ 1; 2; . . . ;N 0 are averaged, to produce a
Morris mXj

and its related standard deviation sX j
. Hence

although an individual EEi
X j

term can be seen as an OAT
approach, the summary statistics mX j

and sX j
are global

measures of sensitivity.
The value of N0 for Morris is as a rule quite lower than N

for variance based methods, say N 0 � ð 1
100
; 1
10
ÞN. The total

number of model evaluations needed to estimate all mXj

and sX j
is a linear function of the number of factors k, i.e.

r� ðk þ 1Þ.
In problem settings such as that of Factor Fixing, we

recommend the use of the modulus difference EEi
X j

above
because, as explained in [52,93] the resulting modified
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measure mXj
can be proved to be equivalent (in terms of

ranking important factors) to STj. The equivalence is
intuitive. If moving Xj of one step along its axis at all points
in the input space results in no modulus change in Y, then
surely Xj is non-influent. Values of the modified (i.e. taking
the absolute value in (1)) Morris measure m for the case
with k ¼ 2r factors are given in the last columns of Tables
1–3. One can see that the ordering of the factors based on
STjmj, which is in general very similar, in this case is even
identical.

Appendix E. The test of Smirnov in sensitivity analysis

The Smirnov two-sample test (two-sided version) is used
on each factor, independently [37]. The Smirnov test is
applicable when a qualitative definition for the ‘‘good’’ or
‘‘acceptable’’ behaviour of a model can be defined, e.g.
through a set of constraints, thresholds, ceilings, time
bounds based on available information on the system. The
steps for the analysis are as follows.
	
 Define a range for k input factors Xi (1oiok), reflecting
uncertainties in the model and make a number of Monte
Carlo simulations. Each Monte Carlo simulation is
associated to a vector of values of the input factors.

	
 Classify model outputs, according to the specification of

the ‘‘acceptable’’ model behaviour (qualify a simulation
as behaviour (B) if the model output lies within
constraints, non-behaviour (B̄) otherwise).

	
 Classifying simulations as either B or B̄, a set of binary

elements is defined allowing to distinguish two sub-sets
for each Xi: ðX ijBÞ of m elements and ðX ijB̄Þ of n

elements (where nþm ¼ N, the total number of Monte
Carlo runs performed).

	
 The Smirnov two-sample test (two-sided version) is

performed for each factor independently, analysing the
maximum distance dmax between the cumulative dis-
tributions of the B and B̄ sets (see Fig. 4).

In [52], MCF, BMA and related topics are discussed,
including limitations of pure MCF and the combination of
global SA and BMA.

Appendix F. The use of sensitivity analysis in a diagnostic

setting—calibrating an hyper-parametrised model

Consider a calibration problem for a computational
model. We do not know how the model is done—imagine it
is a computer code. The output of interest Y is a measure of
likelihood, obtained after comparing the model prediction
m with data d, e.g. Y ¼ const.� exp(�[sum of squared
residuals of m versus d]). In many cases, the log-likelihood
scale is considered, which, following the definition above, is
equivalent to the negative of the sum of scores.

Suppose we model some phenomenon varying with time
(e.g. a chemical reaction), and we have a set of observations
t ¼ 1; . . . ;T , then:

Y ¼ const:� exp �
XT

t¼1

ðmt � dtÞ
2

 !
.

How can we characterise the good parameter set for
model calibration? Under a classical estimation framework
one would feed the likelihood function Y to some
maximisation routine and try to get the maximum in the
k-dimensional model parameter space. This is in principle a
straightforward route but in practice can be extremely
complex and cumbersome, e.g. in the case of over-
parameterised models.
The present example illustrates this kind of circum-

stances, for a model with six parameters. We will proceed
‘‘blindly’’, step by step in our search, and only in the end
we will uncover the interaction structure underlying the
calibration.
Some graphical inspection is, probably, the first step one

could perform. So, assume we did some thousands of
Monte Carlo runs and we wanted to analyse the mapping
between the model parameters and the likelihood. Para-
meters are sampled from univariate normal distributions.
We can start with scatter plots of the log-likelihood vs.

parameters. This is not very informative (Fig. 5a): no signs
of nicely shaped ‘‘parabola’’ patterns with clearly identifi-
able maxima. One clear information is only available: the
origin is the ‘‘worst’’ location in the model parameter
space. Interestingybut the opposite of what we are
looking for. We could then proceed with a categorisation,
by selecting the model runs providing a log-likelihood
larger than a given threshold. Doing again scatter plots
with the filtered sample leaves us in the dark (Fig. 5b). This
confirms that there is no way in characterising an optimum
simply with a univariate analysis.
Let us increase the dimensionality and analyse two-

dimensional (2-D) structures. This can still be done
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graphically analysing 2-D projections of the Monte Carlo
sample onto planes defined by couples of model parameters
(i.e. again under the form of scatter plots). Comparing
the 2-D projections of the original Monte Carlo sample
(Fig. 6a) to those of the filtered sample (Fig. 6b) is like-
wise non-informative: no difference can be noticed after
the categorisation. Note that even if we computed on the
filtered input factors (Fig. 6b) the pairwise correlation
coefficients we would obtain zeros. Also Principal Compo-
nent Analysis would not be informative as applied to the
filtered input sample, as there are no correlations among
the filtered factors. So, it seems that there does not exist
any 2-D elementary structure allowing characterising
somehow the interaction structure binding parameters
under ‘‘good’’ behaviour. We should then move to higher
dimensions. Graphically? This becomes cumbersome: how
to visualise scatter plots in 3-D? Correlation analysis is
clearly limited to 2-D structures, so, what can we do?

SA is able to quantify the effect of model parameters
under interaction structures of any order. In this context,
we extend the meaning of SA, which is not only to quantify
and rank in order of importance the sources of prediction
uncertainty, but, which is much more relevant to calibra-
tion, to identify the elements (parameters, assumptions,
structures, etc.) that are mostly responsible for the model
realisations in the acceptable range.
Computing the first order sensitivity indices for the log-

likelihood and the second order ones (Fig. 7), a story starts
to emerge; there are non- zero second order effects, but
only within the closed groups involving factors (X1, X2, X3)
and (X4, X5, X6).
Computing the third order effects (Fig. 8) only

S123;S456a0. Regrouping and adding the terms up gives
an interesting result:

Sc
123 ¼ S1 þ S2 þ S3 þ S12 þ S13 þ S23 þ S123 ¼ 0:5,

Sc
456 ¼ S4 þ S5 þ S6 þ S45 þ S46 þ S56 þ S456 ¼ 0:5,

where we have used the supescript c symbol to denote the
effects closed within the indices. The variance of the
problem is characterised by two groups of three factors.
Higher term orders are zero.
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This leads the investigator to conclude that what could
be reasonably estimated are two unknown functions of two
parameter sub-sets. We can now reveal that the unknown
log-likelihood function to optimise was the sum of two
spheres.

f ðX 1; . . . ;X 6Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

1 þ X 2
2 þ X 2

3

q
� R1

� �2

=A1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

4 þ X 2
5 þ X 2

6

q
� R2

� �2

=A2.

Were the investigator to identify this structure, by trial
and error, he/she would conclude that all that estimation
can provide are the two radiuses.
To this goal, the information of the ‘‘worst’’ location
could have been useful. The easiest structure leaving out
the origin is a spherical symmetry. But in which dimen-

sions? There are as many as
6

2

� �
¼ 15 2-D;

6

3

� �
¼ 20

3-D,
6

4

� �
¼ 15 4-D;

6

5

� �
¼ 6 5-D spheres. May be too

many for a blind search. SA has been helpful in driving the
analysis to the correct solution!

In conclusion, where a classical estimation approach is
impractical and model factors cannot be defined, nor the
clear definition of a well defined model structure or set of
hypotheses can be established, applying, e.g. standard
statistical testing procedures, SA becomes an essential tool.
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Model factors can be classified, e.g. as ‘‘important/
unimportant’’ according to their capability of driving the
model behaviour. Such capability is clearly highlighted by
the SA, which plays a similar role, e.g. of a t-test on a least-
squares estimate of a linear model. To exemplify the
relevance of SA in this context, one could say that
‘‘sensitivity indices are to calibration, what standard
statistical tests are to estimation’’ [52].
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