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Elements of quantification for 
decision making with 
emphasis on operation 
research 
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Where to find this talk

The talk is also at

https://ecampus.bsm.upf.edu/, 

where you find additional reading 
material

https://ecampus.bsm.upf.edu/
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Mid term assignment October 29 

9.00-10.40 lesson
10.40-11.00 break

11.00-13.00 assignment 
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Homework from last lesson 
1. Compute the chance of having exactly 5 heads throwing a coin 8 times.

𝑃 𝑛, 𝑘, 𝑝 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘 =
8
5

1

2

5
1

2

8−5

= .219
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Homework 
2. Re-do manually the exercise of slides 25-27 (Lesson #3) 
with these new values for the constraints

OLD                                                            NEW

Maximize 𝑍 = 3𝑥1 + 5𝑥2

Subject to: 

𝑥1 ≤ 4
2𝑥2 ≤ 12

3𝑥1 + 2𝑥2 ≤ 18 
𝑥1 ≥ 0
𝑥2 ≥ 0

Maximize 𝑍 = 3𝑥1 + 5𝑥2

Subject to: 

𝑥1 ≤ 5
2𝑥2 ≤ 13

3𝑥1 + 2𝑥2 ≤ 19
𝑥1 ≥ 0
𝑥2 ≥ 0
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𝑍 = 3𝑥1 + 5𝑥2 = 38.5
for 𝑥1 = 2 and 𝑥2 = 6.5
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Homework 

3. The following table gives a two-way classification of all basketball players at a state 
university who began their college careers between 2001 and 2005, based on gender and 
whether or not they graduated. If one of these players is selected at random, find the 
following probabilities: 
P(female) 
P(male) 
P(graduated) 
P(non graduated) 
P(female and graduated)
=P(female∩)graduated
P(male and did not graduate)
=P(male ∩ did not graduate) 

Also find P(graduated and did not graduate) = P(graduated ∩ did not graduate). Is this 
probability zero? If yes, why?

259 87

=165/346

165

181
=181/346

346

=259/346

=87/346

=133/346

=55/346

Yes, because mutually exclusive
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Homework 
4. Using the results achieved in the preceding exercise compute 

P(female or did not graduate) = P(female ∪ did not graduate)=
=P(female)+P(did not graduate)- P(female ∩ did not graduate)

P(graduated or male) = P(graduated ∪ male)=
=P(graduated)+P(male)-P(graduated ∩ male)  
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Homework 
5. A certain state’s auto license plates have three letters of the alphabet followed by a 

three-digit number. 
a. How many different license plates are possible if all three-letter sequences (letter 

can be repeated) are permitted and any number from 000 to 999 is allowed? 

26 letter English alphabet ➔ 263 permutations from AAA to ZZZ 
1000 numbers allowed
Total= 1000 ∗ 263 = 17,576,000

b) If a witness of a hit-and-run accident says that the first letter on the license plate 
of the offender’s car was a B, that the second letter was an O or a Q, and that the 
last number was a 5, how many of this state’s license plates fit this description?

All groups letter with B and either a O or a Q make 26 + 26 ; at possible permutations 
ending with 5 are 100 (from 00 to 99 ); total=52 ∗ 100 = 5,200
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5. Show graphically that this is true 

The complement to this is the above

The union of this plus the corresponding plot for 𝐵′ is the above 
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The nut-mix problem: OK the solution killing 

mixture D, so both solutions legitimate

Source: https://www.cashews.org

https://www.nutsforlife.com.au

Cashew
(anacardi)

Peanuts
(maní)

Source: https://www.woodlandtrust.org.uk/

Hazels
(avellana)  
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1) Anyone  wants to try it on SOLVER?

2) Help to get the source? On US Amazon at 

$23 but does not ship to Spain

An Introduction to Linear Programming, Abraham 

Charnes,

William W. Cooper, A. Henderson, John Wiley & 

Sons, New York
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Why is all this important? Fishing 
expeditions and forking paths … 

Exploring with global 
sensitivity analysis 
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Jorge Luis Borges  
(1899-1986)

Taking different
storylines within the 
same novel like Ts'ui Pên
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‘Fishing expedition’? An analyst changing 
the question asked from the data to squeeze 
out a publishable effect  

‘P-hacking’? an analyst torturing the data to 
pass a significance test (remember the tea 
drinker of Lesson 1)
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Why this matters?  
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“Will different 
researchers [73 
teams] converge 
on similar findings 
when analyzing the 
same data?

…teams’ results 
varied greatly, 
ranging from large 
negative to large 
positive effects” 
(Massey et al. 2022)
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Global sensitivity 
analysis can chart the 
garden before you enter 
into it … 

Andrea Saltelli, Arnald Puy, Alessio Lachi, and Nate Breznau, 2024, Global 

sensitivity analysis unveils the hidden universe of uncertainty in multiverse 

studies, MetaArXiv Preprints, https://osf.io/preprints/metaarxiv/b67w9.

What the analyst did 
in the garden

A simulation of walking in 
the garden

What sensitivity analysis 
says about the choices
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For Machine Learning students: Bénesse, C., Gamboa, F., Loubes, J.-M., & Boissin, T. (2022). Fairness seen as Global 
Sensitivity Analysis. Machine Learning. https://doi.org/10.1007/s10994-022-06202-y

Another use for uncertainty and sensitivity analysis

In machine learning, check that the algorithm is ‘fair’

Ascertain that an algorithm 
does not make implicit use of 
protected attributes (for 
example in the graph 𝑌 must 
not depend upon  𝑥1) 
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More 
‘shape’

Less 
‘shape’

=more 
important

=less 
important

Recap from previous lesson: recognizing variable importance 
from scatterplots in the 𝑥𝑖 , 𝑦 plane, both in [0,1]
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More 
‘shape’

Less 
‘shape’

=more 
important

=less 
important

Recap from previous lesson: recognizing variable importance 
from scatterplots in the 𝑥𝑖 , 𝑦 plane, both in [0,1]
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Bigger 
‘holes’

Smaller 
‘holes’

=more 
important

=less 
important

Recap from previous lesson: recognizing variable importance 
from scatterplots in the 𝑥𝑖 , 𝑦 plane, both in [0,1]
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Just a reminder from previous lessons and a note 

Permutations n 

elements in 

classes of k 

(variations)

Combinations n 

elements in 

classes of k 

No repetition 𝑛!

𝑛 − 𝑘 !

𝑛
𝑘

=
𝑛!

𝑘! 𝑛 − 𝑘 !

Repetition 
𝑛𝑘 𝑛 + 𝑘 − 1

𝑘

Somewhere you see 𝑛! called a permutation and 
𝑛!

𝑛−𝑘 !
a variation; 

MOST WORKS call these latter permutation in classes of 𝑘
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Combinations and permutations with repetition: example three 
objects ABC in groups of 2 

Permutations 3 

elements in classes of 

2 (variations)

Combinations 3 

elements in classes of 

2

No repetition AB,BA,AC,CA,BC,CB 

(3!/1!=6) 

AB,AC,BC (3!/2!=3) 

Repetition 

AA,BB,CC,AB,BA,AC,

CA,BC,CB (32=9) 

AA,BB,CC,AB,AC,BC 

(4!/(2!2!)=6)
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In this set of slides: 

The Transportation Problem12

The Assignment Problems (sketched) 13

Network Optimization Models14

Integer Programming (beginning) 15
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The Transportation problem 

Framing of the problem, assumptions and properties of 
the solution. Hillier 2014, chapter 9.

12.
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Three canneries 
and four 

warehouses

A prototype example of a Transportation Problem: shipping 
canned peas from canneries to warehouses  

Source: Wikipedia Commons
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An old type of problem, recall the 
Torricelli and Fermat point 

1.Construct an equilateral triangle on each 
of the sides 
2. From each of the farmost vertex draw a 
line the opposite vertex of the original 
triangle.
3. Where the three lines intersect is the 
Torricelli-Fermat point.

Source: Wikipedia Commons 

https://en.wikipedia.org/wiki/Equilateral_triangle
https://en.wikipedia.org/wiki/Vertex_(geometry)
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A prototype example: shipping canned peas from 
canneries to warehouses; this table contains all the 
information; where are the geographical distances?   
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In linear 
programming the 
geography can be 
made to disappear

Here it is replaced 
by costs per 
truckload per 

season  
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A prototype example: shipping canned peas from 
canneries to warehouses  

We know how 
much moving 

truckloads costs 

… and how much 
each warehouse 

should be 
provided with

Subject to cannery 
constraints  



33

Minimize or maximize? 

What? 

Minimize 

Total shipping cost; decision 
variable 𝑥𝑖,𝑗 , 𝑖 = 1,2,3; 𝑗 = 1,2,3,4

number of truckloads from cannery 
𝑖 to warehouse 𝑗
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= 464 𝑥1,1 + 513 𝑥1,2 + 654 𝑥1,3 + 867 𝑥1,4

+ 352 𝑥2,1 + 416 𝑥2,2 + 690 𝑥2,3 + 791 𝑥2,4

+ 995𝑥3,1 + 682 𝑥3,2 + 388 𝑥3,3 + 685 𝑥3,4

Minimize total shipping cost 𝑍
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𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 = 75

𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 = 125 

𝑥3,1 + 𝑥3,2 + 𝑥3,3 + 𝑥3,4 = 100

Subject to 
cannery 

constraints  

and 
warehouse 
constrains 

𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 80 

𝑥1,2+𝑥2,2 + 𝑥3,2 = 65

𝑥1,3 + 𝑥2,3 + 𝑥3,3 = 70

𝑥1,4 + 𝑥2,4 + 𝑥3,4 = 85

𝑥𝑖,𝑗 ≥ 0 𝑖 = 1,2,3; 𝑗 = 1,2,3,4 ; truckload from 

cannery 𝑖 = 1,2,3 to warehouse 𝑗 = 1,2,3,4
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Anything noticeable about these 
two sets of numbers?

Supply and demand balance out at 300
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12 decision 
variables 

Why?

(3 ways to choose a 
cannery and 4 ways 

to choose a 
warehouse) 

𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 = 75

𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 = 125 

𝑥3,1 + 𝑥3,2 + 𝑥3,3 + 𝑥3,4 = 100

3 cannery constraints… 

𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 80 

𝑥1,2+𝑥2,2 + 𝑥3,2 = 65

𝑥1,3 + 𝑥2,3 + 𝑥3,3 = 70

𝑥1,4 + 𝑥2,4 + 𝑥3,4 = 85

…+4 warehouse constraints = 
seven constraints in total  



38

What is new here with respect to our previous LP problems?

These balance out

300

These don’t 
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What else is new here with respect to our previous LP problems?

300

Constraint horizontally 

Constraint horizontally and 
vertically  
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Else? 

300

Functional constraint equations 
coefficients 𝑎𝑖𝑗 are all = 1

𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 = 75

𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 = 125 

𝑥3,1 + 𝑥3,2 + 𝑥3,3 + 𝑥3,4 = 100

𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 80 

𝑥1,2+𝑥2,2 + 𝑥3,2 = 65

𝑥1,3 + 𝑥2,3 + 𝑥3,3 = 70

𝑥1,4 + 𝑥2,4 + 𝑥3,4 = 85
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More? 

300

These go into the 
optimization equation 

= 464 𝑥1,1 + 513 𝑥1,2 + 654 𝑥1,3 + 867 𝑥1,4

+ 352 𝑥2,1 + 416 𝑥2,2 + 690 𝑥2,3 + 791 𝑥2,4

+ 995𝑥3,1 + 682 𝑥3,2 + 388 𝑥3,3 + 685 𝑥3,4
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The constraints can be written as a 
distinct pattern that is characteristic of 

the Transportation and Assignment 
Problem   

Combining the 12 decision variables with 
the 7 constraints produces this pattern  

C
a
n
n
e
ry

  W
a
re

h
o
u
s
e

Decision variables 1 to12 ➔

C
o
n
s
tra

in
ts

 1
 to

 7
 
➔
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In standard linear 
programming zeros 
are explicit

Table/matrix form of the 
constraint coefficients; 

coefficients equal to zero are 
left as blanks
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The are in principle 7*12=84 cells in this matrix but most cells are empty   

Decision variables 1 to12 ➔ C
o
n
s
tra

in
ts

 1
 to

 7
 
➔

How many cells are not empty? 

24 cells non empty. Why? 

Each of the two sets of constraints (cannery and 
warehouse) uses each and every of the 12 
decision variable just once  

C
a
n
n
e
ry

  W
a
re

h
o
u
s
e
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This is the 
distinct pattern 

linking 
decision 

variables and 
constraints  in 

the 
Transportation 

and 
Assignment 

Problem   
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Key characteristic of the 
Transportation and Assignment 
Problems: the 𝑎𝑖𝑗 coefficients in 

the constraints are either 
zeros (most of them) or one (few), 
that show a distinctive pattern
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Or as a 
graph/network 
representation  
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Supply 

Sources

Costs 

Terminology of the  Transportation and Assignment Problem 

Note the 
negative sign

Demand

Destination
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𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 = 75

𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 = 125 

𝑥3,1 + 𝑥3,2 + 𝑥3,3 + 𝑥3,4 = 100

The = sign (instead of ≤≥) in the supply and demand 
represents the requirement assumption of the Transportation 

and Assignment Problem: supply and demand are fixed 

➔ No wiggle room: the supply must be supplied and the 
demand must be met in total  

𝑥1,1 + 𝑥2,1 + 𝑥3,1 = 80 

𝑥1,2+𝑥2,2 + 𝑥3,2 = 65

𝑥1,3 + 𝑥2,3 + 𝑥3,3 = 70

𝑥1,4 + 𝑥2,4 + 𝑥3,4 = 85
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= 464 𝑥1,1 + 513 𝑥1,2 + 654 𝑥1,3 + 867 𝑥1,4

+ 352 𝑥2,1 + 416 𝑥2,2 + 690 𝑥2,3 + 791 𝑥2,4

+ 995𝑥3,1 + 682 𝑥3,2 + 388 𝑥3,3 + 685 𝑥3,4

Minimize total shipping cost 𝑍 =
The cost assumption:  distributing units 
from any source to any destination is 
proportional to the number of units 
distributed; if 𝑐𝑖𝑗 is the unit cost and 

𝑥𝑖𝑗  the number of units, the cost is 

simply 𝑐𝑖𝑗𝑥𝑖𝑗
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The requirements assumption is 
typic of transportation problem, 
while the cost assumption is not 

new, right? 

What are the assumptions we 
studied  already? 
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Whether or not actual transportation is involved, any problem in the 
format of this table that obeys the requirement and cost assumption is a 

transportation problem 
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Compact formulation for a problem with 
𝑚 sources 𝑠 and 𝑛 destinations 𝑑:

Minimize 𝑍 = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗

Subject to source and demand constraints 

σ𝑗=1
𝑛 𝑥𝑖𝑗 = 𝑠𝑖 for    𝑖 = 1,2, … 𝑚

σ𝑖=1
𝑚 𝑥𝑖𝑗 = 𝑑𝑗 for 𝑗 = 1,2, … 𝑛 

𝑥𝑖𝑗≥0 for (𝑖 = 1,2, … 𝑚; 𝑗 = 1,2, … 𝑛)
BUT a transportation problem will 

have feasible solution if and only if 
σ𝑖=1

𝑚 𝑠𝑖 = σ𝑗=1
𝑛 𝑑𝑗  

(supply and demand balance out as in 
the example)
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Compact formulation for a problem 
with 𝑚 sources 𝑠 and 𝑛 destinations 𝑑:

Minimize 𝑍 = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗

Subject to

σ𝑖=1
𝑚 𝑥𝑖𝑗 = 𝑑𝑗 for 𝑗 = 1,2, … 𝑛 

σ𝑗=1
𝑛 𝑥𝑖𝑗 = 𝑠𝑖 for    𝑖 = 1,2, … 𝑚

𝑥𝑖𝑗≥0 for (𝑖 = 1,2, … 𝑚; 𝑗 = 1,2, … 𝑛)



𝑖=1

𝑚

𝑠𝑖 = 

𝑗=1

𝑛

𝑑𝑗  

(supply and demand balance out)

The integer solutions property: For 
transportation problems where every 𝑠𝑖

and 𝑑𝑖 have an integer value, all basic 
feasible (BF) solutions (including an 

optimal one) also have integer values
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Optimal solution with Excel Solver
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Tom would like 2 pints of home brew today and an additional 7 pints of 
home brew tomorrow. Dick is willing to sell a maximum of 5 pints total at a 
price of $3.00 per pint today and $2.70 per pint tomorrow. Harry is willing to 
sell a maximum of 4 pints total at a price of $2.90 per pint today and $2.80 
per pint tomorrow. Tom wishes to know what his purchases should be to 
minimize his cost while satisfying his thirst requirements. What would you 
do being Tom?

Formulate this problem as a transportation problem by constructing
the appropriate parameter table; verify the requirement assumption and 
solve

Today Tomorrow

Dick 3. 2.70 5

Harry 2.90 2.80
4

Tom/day
2 7

Now write the equations 
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Tom would like 2 pints of home brew today and an additional 7 pints of 
home brew tomorrow. Dick is willing to sell a maximum of 5 pints total at a 
price of $3.00 per pint today and $2.70 per pint tomorrow. Harry is willing 
to sell a maximum of 4 pints total at a price of $2.90 per pint today and 
$2.80 per pint tomorrow. Tom wishes to know what his purchases should 
be to minimize his cost while satisfying his thirst requirements.

Formulate this problem as a transportation problem by constructing
the appropriate parameter table; verify the requirement assumption and 
solve

Today Tomorrow

Dick 3. 2.70 5

Harry 2.90 2.80
4

Tom/day
2 7

Minimize 
3𝑥11 + 2.7𝑥12 + 2.9𝑥21 + 2.8𝑥22

Subject to 
𝑥11 + 𝑥12 ≤ 5
𝑥21 + 𝑥22 ≤ 4
and
𝑥11 + 𝑥21 = 2
𝑥12 + 𝑥22 = 7

That is soluble because 4 + 5 = 2 + 7 = 9

Note the deviation from the 
standard transportation 
problem, ≤ instead of =
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The solution is 

𝑥11 = 0
𝑥12 = 5
𝑥21 = 2
𝑥22 = 2

That gives 𝑍 = 2.7 ∗ 5 + 2.9 ∗ 2 + 2.80 ∗ 2 = 24.9



60

However, soon we see how to reformulate 
the problem to get around this constraint

In some real problems, the supplies actually represent 
maximum amounts (rather than fixed amounts) to be 
distributed. Similarly, in other cases, the demands represent 
maximum amounts (rather than fixed amounts) to be received. 
Such problems do not quite fit the model for a transportation 
problem because they violate the requirements assumption 
...which is? 

No wiggle room! All 
supply out and all 
demand in 
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The Assignment  problem 

A brief sketch. Hillier 2014, chapter 9.  

13.
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The assignment problem is a special type of linear programming problem 
where assignees are being assigned to perform tasks

Charles Chaplin’s Modern Times, source http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html
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1. The number of assignees and the number of tasks are the same. 
2. Each assignee is to be assigned to exactly one task.
3. Each task is to be performed by exactly one assignee.
4. There is a cost 𝑐𝑖𝑗 associated with assignee 𝑖, (𝑖 = 1,2, … 𝑛) performing 

task 𝑗, (𝑗 = 1,2, … 𝑛).
5. The objective is to determine how all 𝑛 assignments should be made to 
minimize the total cost … but 

Source: Wikipedia Commons Charles Chaplin’s Modern Times, source 
http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html



➔

?
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In fact, the assignment problem is just a special type of transportation
problem where the sources now are assignees and the destinations now are 
tasks and where: 

Number of sources m = number of destinations n,
Every supply 𝑠𝑖 = 1,
Every demand 𝑑𝑗 = 1
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Number of sources m = number of destinations 𝑛,
Every supply 𝑠𝑖 = 1,
Every demand 𝑑𝑖 = 1

Minimize 𝑍 = σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗

Subject to

σ𝑖=1
𝑛 𝑥𝑖𝑗 = 1 for 𝑗 = 1,2, … 𝑛 

σ𝑗=1
𝑛 𝑥𝑖𝑗 = 1 for    𝑖 = 1,2, … 𝑛

𝑥𝑖𝑗≥0 for (𝑖 = 1,2, … 𝑛; 𝑗 = 1,2, … 𝑛)

Plus
𝑥𝑖𝑗= binary (0 𝑜𝑟 1) for 

(𝑖 = 1,2, … 𝑛; 𝑗 = 1,2, … 𝑛)
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Minimize 𝑍 = σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝑐𝑖𝑗𝑥𝑖𝑗

Subject to

σ𝑖=1
𝑛 𝑥𝑖𝑗 = 1 for 𝑗 = 1,2, … 𝑛 

σ𝑗=1
𝑛 𝑥𝑖𝑗 = 1 for    𝑖 = 1,2, … 𝑛

𝑥𝑖𝑗≥0 for (𝑖 = 1,2, … 𝑛; 𝑗 = 1,2, … 𝑛)

Plus
𝑥𝑖𝑗= binary (0 𝑜𝑟 1) for 

(𝑖 = 1,2, … 𝑛; 𝑗 = 1,2, … 𝑛)

Each task must be served 

Each assignee must have work 
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Thus assignment and transportation share the same useful 
properties in terms of existence of integer solutions 

Source: Wikipedia Commons Charles Chaplin’s Modern Times, source 
http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-modern-times.html



➔
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Assignment and transportation have same network representation 



➔



69

Machine 2 cannot go to location 2, so 
a very large cost 𝑀 in entered in the 

empty cell 

A typical problem offered in the book locating three machine among 
four facilities, with different cost per machine / facility  
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But … 

Violates the requirement assumption: No wiggle room: the supply 
must be supplied and the demand must be met in total  
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Transportation

Note: in the transportation 
problems one can have e.g. 3 
canneries and 4 warehouses but in 
the assignment problems number 
of sources and number of 
destination must be equal 

Transportation
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Since assignees and tasks must be 
equal a dummy machine is introduced

reformulate = 
using dummies 
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A typical problem offered in the book 
locating three machine among four 
facilities, with different cost per 

machine / facility  

Can you guess the 
solution “by inspection?” 

Machine 1 to location 4 
Machine 2 to location 3
Machine 3 to location 1

The algorithms (not described here) would 
assign the dummy machine 4 to location 2 
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Network Optimization Models

More network problems: shortest-path problem, the 
minimum spanning tree problem, maximum flow 
problem. Hiller 2014, chapter 10. 

14.
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Many network optimization models are special types of linear programming 
problems – e.g. the transportation problem and the assignment problem 

… which indeed have  a 
network representation
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Our new prototype problem – the “Seervada Park” road system 

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-francisco/?
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Three practical problems
- Shortest path from entrance 𝑂 to 

scenic point T
- Minimum length of telephone lines 

covering all tracks (minimum 
spanning tree)

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-francisco/?

- Maximum flow of mini-trains 
carrying non trekkers from entrance 
𝑂 to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/
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Some terminology: nodes (or vertices), arcs (or links or edges or branches)

A node
An arc
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Entrance, 
origin 

Sightseeing, 
destination 
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The trains trough the park represent a type 
of ‘flow’ through the arcs  

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/
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More terminology: 

Directed arcs (flow only in one directions) and undirected arcs or link (flow in 
both directions) 
Networks can also be directed (only directed arcs) or undirected
A path trough nodes can be directed when every step from node 𝑖 to node 𝑗 is in 
the direction of 𝑗.  

A→B →C→E = directed path 

B→C→A→D = undirected path 

A directed network 

If you  think of this as a flow 
in a one-way pipe, this is 
impossible, but it will come 
handy later
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Cycles can also be directed or undirected 

D→E →D = directed cycle 

A→B→C→A = undirected cycle 

A directed network 
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Note that our links have no arrows, the network is made of undirected arcs. It is 
thus… 

… and undirected network
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More terminology: starting from bare nodes, trees can be grown

… bare nodes 
A network; 
stripping the 
arc one gets … 
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Starting from bare nodes, trees can be grown

(a) bare nodes 

(b) Tree with 
one arc

(c) Tree with 
two arcs

(d) Tree with 
three arcs

(e) Spanning tree: all nodes 
connected by directed arcs  
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A spanning tree connects 𝑛 nodes with n-1 directed arcs

A spanning tree is a connected network without unconnected nodes 

(e) Spanning tree: all nodes 
connected by directed arcs  
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A spanning tree connects 𝑛 nodes with n-1 directed arcs

A spanning tree is a connected network without unconnected arcs

n-1 is both the minimum number of arcs needed and the maximum
one, as adding one arc would generate an undirected cycle

(e) Spanning tree: all nodes 
connected by directed arcs  

Adding e.g. arc A→C 
(even if undirected)  
closes the loop but 

generates undirected 
cycles
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We are now ready to tackle the shortest path problem 

Ramon Casas and Pere Romeu on a Tandem, Barcelona. Source: Wikipedia Commons  
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“Consider an undirected and connected network with two special 
nodes called the origin and the destination. Associated with each 
of the links (undirected arcs) is a nonnegative distance. The 
objective is to find the shortest path (the path with the minimum
total distance) from the origin to the destination” 

Let’s learn by doing, 
on our test case: the 
mission is to go from 
the entrance 𝑂 to the 
scenic point T
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Theory: Objective of nth iteration: Find the nth nearest node to the origin (to be 
repeated for n = 1, 2, . . . until the nth nearest node is the destination. 
Practice: the nearest note to O is A

Algorithm for the Shortest-Path Problem
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Theory: Objective of nth iteration: Find the nth nearest node to the origin (to be 
repeated for n = 1, 2, . . . until the nth nearest node is the destination. 
Practice: the nearest note to O is A
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Theory: Input needed for nth iteration: 𝑛 − 1 nearest nodes to the origin (solved for at 
the previous iterations), including their shortest path and distance from the origin.
(These nodes, plus the origin, will be called solved nodes; the others
are unsolved nodes)
Theory: Candidates for nth nearest node: Each solved node that is directly connected 
by a link to one or more unsolved nodes provides one candidate — the unsolved node 
with the shortest connecting link to its solved node is taken

Algorithm for the Shortest-Path Problem
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Theory: Candidates for nth nearest node: Each solved 
node (𝑂, 𝐴 now) that is directly connected by a link to one 
or more (nearest) unsolved nodes (𝐶, 𝐵 respectively) 
provides one candidate — the unsolved node with the 
shortest connecting link to this solved node. (Ties 
provide additional candidates)
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Theory: Calculation of nth nearest node: For each such solved 
node and its candidate, add the distance between them and the 
distance of the shortest path from the origin to this solved node. 
The candidate with the smallest such total distance is the nth 
nearest node (ties provide additional solved nodes – as in this 
case 𝐶 and 𝐵 with 4 miles), and its shortest path is the one 

generating this distance

tie



95

The solved nodes are now 𝐴, 𝐵, 𝐶, and the closest nodes 
are D,E  
(E is closest for both B and C )
E wins as 4th closest node (7 miles)

wins
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The solved nodes closest to an unsolved note are now 
𝐴, 𝐵, 𝐸, and for all the closest node is D  
D wins as 5th closest node (8 miles)

tie
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The solved nodes closest to an unsolved note are now 
𝐷, 𝐸, and for both the closest node is the target 
destination T  ; T wins as 6th closest node (13 miles)

wins
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Note how at each step the 
distance for the various 
candidate is computed…

… and the minimum 
distance is recorded 
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Hence the solution:
O→A→B→D→T or
O→A→B→E→D→T

We now move backword, 
from the destination to the 
origin   
T→D→B→A→O
or
T→D→E→B→A→O
Both with 13 miles 

Focus on 
this 

column 
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T→D

B→A→O

E→B→A→O

Hence the solution:
O→A→B→E→D→T
or
O→A→B→D→T

Perhaps clearer in this tree formulation? Focus on 
this column 
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Three practical problems
- Shortest path from entrance 𝑂 to 

scenic point T
- Minimum length of telephone lines 

covering all tracks (minimum 
spanning tree)

Source: https://www.klook.com/en-US/activity/28218-yosemite-park-giant-sequoia-day-tour-san-francisco/?

- Maximum flow of mini-trains 
carrying non trekkers from entrance 
𝑂 to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/
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The Minimum Spanning Tree problem

Source: https://eu.palmbeachdailynews.com/story/entertainment/house-home/2019/12/15/palm-beach-gardening-help-save-planet-by-planting-these-native-trees/2079095007/



103

The Minimum Spanning Tree problem

For the shortest-path problem, we were looking for links 
that provide a path between the origin and the destination. 
We now just look for a minimum set of links that connect all 
nodes    

Could this be a spanning tree?

No, missing node
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𝑛 nodes take n-1 links 

➔ Design the network by inserting enough links to satisfy the requirement that 
there be a path between every pair of nodes; The objective is to satisfy this 
requirement in a way that minimizes the total length of the links 
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Could this be a spanning tree?

How about this?

Perhaps this?

Given these nodes  
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All 7 nodes connected with 6 link 

The strategy
Select arbitrarily a node
Identify closest unconnected node
Branch on ties (try both)    
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Select arbitrarily a node e.g. A
Identify closest unconnected node O or B
Branch on ties (try both)    
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Identify closest unconnected node C 
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Identify closest unconnected node E 
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Identify closest unconnected node D 
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Here our spanning tree
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Three practical problems
- Shortest path from entrance 𝑂 to 

scenic point T
- Minimum length of telephone lines 

covering all tracks (minimum 
spanning tree)

- Maximum flow of mini-trains 
carrying non trekkers from entrance 
𝑂 to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/
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We are now left with the last problem to solve: Maximum flow of mini-
trains carrying non trekkers from entrance 𝑂 to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/
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Maximum flow problem

“Typical kinds of applications of the maximum flow problem:
1. Maximize the flow through a company’s distribution network from its factories to its
customers.
2. Maximize the flow through a company’s supply network from its vendors to its factories.
3. Maximize the flow of oil through a system of pipelines. 
4. Maximize the flow of water through a system of aqueducts.

Source: https://www.livescience.com/61862-why-phantom-traffic-jams-happen.html

5. Maximize the flow of vehicles through a transportation network.” (Hillier pp.387-388)
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Maximum flow problem

Also here we proceed by a stepwise algorithm by ‘pumping’ items along preselected paths and 
recording changes. Numbers now represent maximum capacities. The path has now arrows. This 
is a directed network. The mission is to move 14 trains 

Warning: figures 10.6 and 10.7 in the 
online version 
https://www.andreasaltelli.eu/file/repo
sitory/Introduction_to_Operations_Res
earch_10th_Frederick_S_Hillier.pdf  
are wrong, the others are right

This is right
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Nothing has moved yet, 
and we note this by 
putting zeros before the 
node
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Note that in the last 
passage the capacity 
numbers (e.g. 7 for link 
OB) has been moved 
close to the node right 
after it

Interpret the zeroes 
before the node as 
‘nothing passed by 
here’ 
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An augmenting path is a directed path from the source to the sink in 
the residual network such that every arc on this path has strictly 
positive residual capacity; for example 

𝑂→𝐵→𝐸→𝑇

is an augmenting path 
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Chose now the smallest 
residual capacity on this 
path – among 7,5,6 →
5 is the smallest. Move 

five through this path, 
noting what happens

The capacity of link 𝐵𝐸
is now exhausted   
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We now go to the 
augmenting path 

𝑂→𝐴→𝐷→ 𝑇
where the smallest capacity 
is 3, and move it 

The capacity of link 𝐴𝐷 is 
now exhausted   
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Assign a flow of 1 to the 
augmenting path

𝑂→𝐴→𝐵→𝐷→𝑇

Assign a flow of 2 to the 
augmenting path 

𝑂→𝐵→𝐷→ 𝑇

The capacity of links 𝐴𝐵
and 𝑂𝐵 are now exhausted   

Marking 
just one of 

the two 
paths



122

Assign a flow of 1 to the 
augmenting path

𝑂→𝐶→𝐸→𝐷→𝑇

Assign a flow of 1 to the 
augmenting path 

𝑂→𝐶→𝐸→ 𝑇
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Assign a flow of 1 to the 
augmenting path

𝑂→𝐶→𝐸→𝐵→𝐷→𝑇

The capacity of link 𝐵𝐷 is 
now exhausted   

Anything weird here? 
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We have moved ‘counter-
current’, but we haven’t:  
this this is the same as 
reversing part of a previous 
flow. Check this out: 

Check node A,  4 in, 3+1 out

Check node B,  7+1 in, 4+4 out

Check node E,  7 in, 1+6 out

…etc

This was also the final move 
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Check for yourself that 

- No capacity has been 
violated 

- No accumulation takes 
place at any node (what 
got in, got out) Capacities

Actual transport
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Three practical problems
- Shortest path from entrance 𝑂 to 

scenic point T
- Minimum length of telephone lines 

covering all tracks (minimum 
spanning tree)

- Maximum flow of mini-trains 
carrying non trekkers from entrance 
𝑂 to scenic point T

Source: https://www.yosemite.com/things-to-
do/leisure-activities/valley-floor-tour/
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Solve the maximum flow problem for this 
network (Hillier 10.5-1)



128

Integer Programming

Intuitions and fallacies. Why is it more difficult than LP. 
Integer and binary problems. Examples. Solution via 
branch and bound. Take home points. Hillier 2014, 
chapter 12.

15.
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Integer programming; intuition and fallacies

If the solutions need to be integer, there will be less of 
them, so Integer Programming (IP) will be easier than Linear 
Programming (LP)  

- Yes, there will be less solutions, but still a very large 
numbers if they have to be found ‘by inspection’

- The simplex solution of an IP treated as if it were an LP 
(what is called LP relaxation) generally generate 
unfeasible solutions 

A phrenological mapping of the brain. 
Source: Wikipedia Commons 
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Moving from LP to IP which of the four 
assumptions  of LP will need to fall? 

Proportionality: The contribution of each activity to the value of the objective function 𝑍 is proportional to 
the level of the activity 𝑥𝑗 increase in 𝑍 that , as represented by the 𝑐𝑗𝑥𝑗 term in the objective function

Additivity: Every function in a linear programming model (whether the objective function or the function 
on the left-hand side of a functional constraint) is the sum of the individual contributions of the respective 
activities
Divisibility: Decision variables in a linear programming model are allowed to have any values, including 
noninteger values, that satisfy the functional and nonnegativity constraints. Thus, these variables are not 
restricted to just integer values. Since each decision variable represents the level of some activity, it is 
being assumed that the activities can be run at fractional levels
Certainty: The value assigned to the parameters (the 𝑎𝑗

𝑖’s,  𝑏𝑖’s, and 𝑐𝑗’s) of a linear programming model 

are assumed to be known constants
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YES, NO decision variables 

An important class of IP involves binary decision variables 
that can be represented as (0,1) 

𝑥𝑗 = ቊ
1 if decision = yes
0 if decision = no

When this is the case the IP problem is said to be a Binary 
Integer Programming (BIP) problem
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A prototype example: building or not building? 

𝑥1 = ቊ
1 if decision = yes build a factory in Los Angeles

0 if decision = no, don′t build a factory in Los Angeles
The choice is if building a new factory in either Los Angeles or San Francisco, or 
perhaps even in both cities. It also is considering building at most one new warehouse, 
but the choice of location is restricted to a city where a new factory is being built.

Options 

1fLA

1fSF

1fLA+w

1fSF+w

2f

2f+wLA

2f+wSF

Just to be sure, which are the options? 

Options NPV 

1fLA       9

1fSF      5

1fLA+w  NF

1fSF+w  5+4

2f           9+5

2f+wLA  NF  

2f+wSF  NF
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𝑥1 = ቊ
1 if decision = yes build a factory in Los Angeles

0 if decision = no, don′t build a factory in Los Angeles
The choice is if building a new factory in either Los Angeles or San Francisco, or 
perhaps even in both cities. It also is considering building at most one new warehouse, 
but the choice of location is restricted to a city where a new factory is being built.

➔ 𝑥1 and 𝑥2 can both be 1, but 𝑥2 and 𝑥3 will depend upon the choice made for 𝑥1, 𝑥2



134

𝑥1 = ቊ
1 if decision = yes build a factory in Los Angeles

0 if decision = no, don′t build a factory in Los Angeles

It is easy to see that the function to be maximized is
𝑍 = 9𝑥1 + 5𝑥2 + 6𝑥3 + 4𝑥4

Note: the capital 
required is 
already
included in the 
net present value
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𝑥1 = ቊ
1 if decision = yes build a factory in Los Angeles

0 if decision = no, don′t build a factory in Los Angeles

And an evident constraint is 
6𝑥1 + 3𝑥2 + 5𝑥3 + 2𝑥4 ≤ 10



136

𝑥1 = ቊ
1 if decision = yes build a factory in Los Angeles

0 if decision = no, don′t build a factory in Los Angeles

Note: 𝑥3 = yes only if 𝑥1 = yes
Likewise: 𝑥4 = yes only if 𝑥2 = yes



137

𝑥3 =1 only if 𝑥1 =1 
𝑥4 =1 only if 𝑥2 =1

So, knowing that al variables need to be either 0 or 1 a possible way 
to include this contingency is the constraint  

𝑥3 ≤ 𝑥1

𝑥4 ≤ 𝑥2
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So, knowing that al variables need to be either 0 or 1 a possible way 
to include this contingency is the constraint  

𝑥3 ≤ 𝑥1

𝑥4 ≤ 𝑥2

Since we only want at most one warehouse, it should also be
𝑥3 + 𝑥4 ≤1
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Wrapping up, here the BIP problem:

Maximize 𝑍 = 9𝑥1 + 5𝑥2 + 6𝑥3 + 4𝑥4

Subject to: 
6𝑥1 + 3𝑥2 + 5𝑥3 + 2𝑥4 ≤ 10
−𝑥1 + 𝑥3≤ 0
−𝑥2 + 𝑥4≤ 0
𝑥3 + 𝑥4 ≤1
and

𝑥𝑗 ≤ 1

𝑥𝑗 ≥0

𝑥𝑗 integer for 𝑗 = 1,2,3,4

𝑥𝑗 binary for 𝑗 = 1,2,3,4or 

𝑥3 ≤ 𝑥1

𝑥4 ≤ 𝑥2
rewritten in 

standard form 
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How many problems can be framed as BIP? 

Investment decisions 
Each yes-or-no decision:
Should we make a certain fixed investment?

Decision variable 𝑥𝑗 = ቊ
1 if yes
0 if no

Siting decision  
Each yes-or-no decision:
Should a certain site be selected to build a facility?

Decision variable 𝑥𝑗 = ቊ
1 if yes
0 if no
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How many problems can be framed as BIP? 

Relocating/restructuring, etc.?   
Each yes-or-no decision:
Should a certain plant remain open?
Should a certain site be selected for a new plant?
Should a certain distribution center remain open?
Should a certain site be selected for a new distribution center?
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How many problems can be framed as BIP? 

Dispatching decisions 
Each yes-or-no decision:
Should a certain route be selected for one of the trucks?

Decision variable 𝑥𝑗 = ቊ
1 if yes
0 if no

Or in more complicated arrangements: Should all the following be 
selected simultaneously for a delivery run:
1. A certain route,
2. A certain size of truck, and
3. A certain time period for the departure?

Decision variable 𝑥𝑗 = ቊ
1 if yes
0 if no

Source: Wikipedia Commons
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How many problems can be framed as BIP? 

An airline application: Assigning crews to sequences of flights (crew scheduling 
problem). In a previous step of the analysis 12 crew flight sequences (ordered 
from one to a max of five), and the problem is to choose three of them so that all 
flights would be covered 
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𝑍 is easy: If 𝑥𝑗 =(0,1) decides if assigning the sequence to one of the three 

crews, then we must minimize:

𝑍 = 2𝑥1 + 3𝑥2 + 4𝑥3 + 6𝑥4 + 7𝑥5 + 5𝑥6 + 7𝑥7 + 8𝑥8 + 9𝑥9 + 9𝑥10 + 8𝑥11 + 9𝑥12
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Since the crews are three it must be 



𝑗=1

12

𝑥𝑗 = 3
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Then for each of the 11 flights (1. San Francisco to Los Angeles all the way to 
11. Seattle to Los Angeles) it must be that the sum of the coefficients covering 
that flight add up to one or more (more crews can fly on a flight – there can be a non working 

crew that still needs to be paid)

1. 𝑥1 + 𝑥4 + 𝑥7 + 𝑥10 ≥1
2. 𝑥2 + 𝑥5 + 𝑥8 + 𝑥11 ≥1
…

11. 𝑥6 + 𝑥9 + 𝑥10 + 𝑥11 + 𝑥12 ≥1

Never mind the numbers 1-5 (flight sequence) in this 
region of the table – it is only important whether 
there is a number or not
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So wrapping up the problem is: 

Minimize 𝑍 = 2𝑥1 + 3𝑥2 + 4𝑥3 + 6𝑥4 + 7𝑥5 + 5𝑥6 + 7𝑥7 + 8𝑥8 + 9𝑥9 + 9𝑥10 + 8𝑥11 + 9𝑥12

Subject to 

σ𝑗=1
12 𝑥𝑗 = 3 and the 11 constraints

𝑥1 + 𝑥4 + 𝑥7 + 𝑥10 ≥1
𝑥2 + 𝑥5 + 𝑥8 + 𝑥11 ≥1
…

𝑥6 + 𝑥9 + 𝑥10 + 𝑥11 + 𝑥12 ≥1

Are we done? 
𝑥𝑗 binary for 𝑗 = 1,2, … 12
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Minimize
𝑍 = 2𝑥1 + 3𝑥2 + 4𝑥3 + 6𝑥4 + 7𝑥5 + 5𝑥6 + 7𝑥7 + 8𝑥8 + 9𝑥9 + 9𝑥10 + 8𝑥11

+ 9𝑥12

Verify that one optimal solution for this BIP model is 
𝑥3 = 1 (assign sequence 3 to a crew)
𝑥4 = 1 (assign sequence 4 to a crew)
𝑥11 = 1 (assign sequence 11 to a crew)
and all other 𝑥𝑗 =0  

and that another optimal solution is 

𝑥1 = 1
𝑥5 = 1
𝑥12 = 1
and all other 𝑥𝑗 =0 

And compute 𝑍 for the two options  
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Minimize
𝑍 = 2𝑥1 + 3𝑥2 + 4𝑥3 + 6𝑥4 + 7𝑥5 + 5𝑥6 + 7𝑥7 + 8𝑥8 + 9𝑥9 + 9𝑥10 + 8𝑥11 + 9𝑥12

Verify that one optimal solution for this BIP model is 
𝑥3 = 1 (assign sequence 3 to a crew)
𝑥4 = 1 (assign sequence 4 to a crew)
𝑥11 = 1 (assign sequence 11 to a crew)
and all other 𝑥𝑗 =0  

and that another optimal solution is 

𝑥1 = 1
𝑥5 = 1
𝑥12 = 1
and all other 𝑥𝑗 =0 

And compute 𝑍 for the two options

Z=18
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We just solved a set covering problem, 
(all flights need to be covered)

A related BIP is the set partitioning 
problem, where instead of e.g. 

𝑥1 + 𝑥4 + 𝑥7 + 𝑥10 ≥1

(previous problem ) one would ask:

𝑥1 + 𝑥4 + 𝑥7 + 𝑥10 =1 

This would prevent more than one crew 
flying on the same flight 

Source:  https://airportwingspvtltd.wordpress.com/2016/01/04/role-and-
responsibilities-of-cabin-crew/
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As mentioned, IP are in general more difficult than LP; though there are less 
solutions, there are many of them; e.g. for a BIP with ten decision variables the 
number of possible solutions is 210 = 1,024

Why? 
permutations with repetition of two elements in groups of 10 

It is not forbidden to try a LP approach for a IP problem (LP relaxation), though 
in general there is no guarantee that the solution will be feasible for the IP 
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It is not forbidden to try a LP approach for a IP problem (LP relaxation), though 
in general there is no guarantee that the solution will be feasible for the IP 

… but when the LP relaxation solution satisfies the integer restriction of the IP 
problem, this solution must be optimal for the IP problem as well (=the best 
among all LP solutions is also the best for the subset of the IP solutions)

The LP relaxation value for the optimization 
function Z is in any case an upper bound for 
the Z of the integer problem 
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It is not forbidden to try a LP approach for a IP problem 
(LP relaxation), though in general there is no guarantee 
that the solution will be feasible for the IP 

“Therefore, it is common for an IP algorithm to begin by 
applying the simplex method to the LP relaxation to check 
whether this fortuitous outcome has occurred”
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Exercise: (Hillier 12.1-2) A young couple, Eve and Steven, want to 
divide their main household chores (marketing, cooking, dishwashing, 
and laundering) between them so that each has two tasks but the total 
time they spend on household duties is kept to a minimum. Their 
efficiencies on these tasks differ, where the time each would need to 
perform the task is given by the following table: 

• Write this as a binary integer programming problem
• Guess a solution  
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More tricks with binary variables. From Hillier, example pages 489-491 

When one of two constraints must hold, for example 

3𝑥1 + 5𝑥2 − 7𝑥3  ≤ 12
or

4𝑥1 + 2𝑥2 + 𝑥3  ≤ 15

But not both we can use an auxiliary binary variable 𝑦 and impose 

3𝑥1 + 5𝑥2 − 7𝑥3  ≤ 12 + 𝑀𝑦
4𝑥1 + 2𝑥2 + 𝑥3  ≤ 15 + 𝑀(1 − 𝑦)

𝑥𝑖 ≥ 0
𝑦 binary 

Where 𝑀 is the usual large number. 
If 𝑦 = 0 the first constraint holds, if 𝑦 = 1 the second   
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“It is common for an IP algorithm to begin by applying the simplex 
method to the LP relaxation to check whether this fortuitous outcome 
has occurred”

This may or may not work see e.g. the simple example 

Maximize 𝑍 = 𝑥2 subject to

−𝑥1 + 𝑥2 ≤
1

2

𝑥1 + 𝑥2 ≤
7

2
 

and

𝑥1 ≥ 0, 𝑥2 ≥ 0
𝑥1, 𝑥2 integers

Find graphically the 
linear solution of this 
problem 

I.e. removing this constraint
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Which is instead the 
IP solutions?



158

Another case where the relaxation solution can be not OK 

Maximize 𝑍 = 𝑥1 + 5𝑥2subject to

𝑥1 + 10𝑥2 ≤ 20

𝑥1 ≤ 2

and

𝑥1 ≥ 0, 𝑥2 ≥ 0

𝑥1, 𝑥2 integers

Find graphically the 
linear solution of this 
problem … 

… i.e. removing this constraint
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𝑥1 = 2,

 𝑥2 =
9

5
𝑍 = 11

𝑥1 = 0,
 𝑥2 = 2
𝑍 = 10

𝑥1 = 2,
 𝑥2 = 1

𝑍 = 7

Did we violate the rule that the LP 
solution is an upper bound for the IP 
solution? 
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When there are may dimensions 
checking that the relaxation solution 
is OK can be tricky; 

Here we have only 7 integer points in 
the feasible region, but the number of 
points grows exponentially with the 
number of dimensions 

In many dimensions better use 
heuristic method (such as genetic 
algorithms, more later) that also work 
for nonlinear problems. 
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But there are IP problems whose structure guarantees an integer 
solution; remember the Transportation Problem (Section 12); 

The integer solutions 
property: For transportation 

problems where every supply 
𝑠𝑖 and demand 𝑑𝑖 have an 
integer value, all basic 
feasible (BF) solutions 

(including an optimal one) 
also have integer values
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But there are IP problems whose structure guarantees an 
integer solution; remember from the section on 
Transportation Problem (Section 12); 

Other special cases are the assignment problem, the 
shortest-path problem, and the maximum flow problem 

Charles Chaplin’s Modern Times, source 
http://internationalcinemareview.blogspot.com/2013/04/charles-chaplin-

modern-times.html

Source: Wikipedia Commons

Source: https://www.yosemite.com/things-to-do/leisure-activities/valley-floor-tour/ Ramon Casas and Pere Romeu on a Tandem, 
Barcelona. Source: Wikipedia Commons  
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Level of difficulty of LP versus IP 

Difficulty of LP problem Difficulty of IP  problem

Source Number of constraints 

Number of integer variables

Binary or general integer? 

Special form? 

Source: 
https://www.dreamstime.com/
illustration/accountant.html
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Back to out prototype example: building or not building? 

The choice is if building a new factory in either Los Angeles or San Francisco, or 
perhaps even in both cities. It also is considering building at most one new warehouse, 
but the choice of location is restricted to a city where a new factory is being built.
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Maximize 𝑍 = 9𝑥1 + 5𝑥2 + 6𝑥3 + 4𝑥4

Subject to: 
6𝑥1 + 3𝑥2 + 5𝑥3 + 2𝑥4 ≤ 10
−𝑥1 + 𝑥3≤ 0
−𝑥2 + 𝑥4≤ 0
𝑥3 + 𝑥4 ≤1
and

𝑥𝑗 binary for 𝑗 = 1,2,3,4

If we apply LP relaxation replacing 
𝑥𝑗 binary for 𝑗 = 1,2,3,4

with 
𝑥𝑗 ≥ 0 for 𝑗 = 1,2,3,4

We obtain   𝑥1, 𝑥2, 𝑥3, 𝑥4 =
5

6
, 1,0,1

with 𝑍 = 16.5

We round this to 16 and keep it as an upper 
bound for the IP problem
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One method to solve IP problems: the branch-and-bound technique

• Branching (split the problem in two branches)
• Bounding (seek for a local optima for 𝑍) 
• Fathoming (Resolving the branching at fathomed the node)

Source: https://www.123rf.com/

Source: https://thesaurus.plus/synonyms/fathomed 
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• Branching (split the problem in two branches)

Maximize 𝑍 = 9𝑥1 + 5𝑥2 + 6𝑥3 + 4𝑥4

Subject to: 
6𝑥1 + 3𝑥2 + 5𝑥3 + 2𝑥4 ≤ 10
−𝑥1 + 𝑥3≤ 0
−𝑥2 + 𝑥4≤ 0
𝑥3 + 𝑥4 ≤1
and

𝑥𝑗 binary for 𝑗 = 1,2,3,4

Maximize 5𝑥2 + 6𝑥3 + 4𝑥4

Subject to: 
3𝑥2 + 5𝑥3 + 2𝑥4 ≤ 10
𝑥3 ≤ 0
−𝑥2 + 𝑥4≤ 0
𝑥3 + 𝑥4 ≤1
and

𝑥𝑗 ≥0 for 𝑗 = 2,3,4

Maximize 𝑍 = 9 + 5𝑥2 + 6𝑥3 + 4𝑥4

Subject to: 
6 + 3𝑥2 + 5𝑥3 + 2𝑥4 ≤ 10
−1 + 𝑥3≤ 0
−𝑥2 + 𝑥4≤ 0
𝑥3 + 𝑥4 ≤1
and

𝑥𝑗 ≥0 for 𝑗 = 2,3,4

𝑥1 = 0

𝑥1 = 1
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• Branching (split the problem in two branches)

We are splitting following the order of the 
variables, i.e. here starting by 𝑥1. Better 
strategies are available

The two subproblems 
are treated as linear 
instead of integer
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• Bounding (seek for local optima for 𝑍) 

Linear programming applied to these 
solutions yields

𝑥1, 𝑥2, 𝑥3, 𝑥4 = 0,1,0,1 with 𝑍 = 9

𝑥1, 𝑥2, 𝑥3, 𝑥4 = 1,
4

5
, 0,

4

5
with 𝑍 = 16.5
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This is where we are at the end of the first bounding step:

Linear solution

Splitting variable

Linear solution

Value of Z

Value of Z
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• Fathoming (Resolving the branching at fathomed the node)

This solution is made of integers! It is 
hence optimal for the subproblem with 
𝒙𝟏 = 𝟎. We call this now the incumbent 
optimum 𝑍∗ = 9 and  say that the 
branch 𝑥1 = 0 is fathomed; in the 
following we can get rid of all branches 
whose 𝑍 ≤ 𝑍∗ = 9

This cannot be fathomed

Since it is optimal 
it does not pay to 
search for other 
solutions in this 

branch
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• Fathoming (Resolving the branching at fathomed the node)

In fact, there are 3 ways of 
fathoming:

Test 1: Its bound by being ≤ 𝑍∗

Test 2: Its LP relaxation has no 
feasible solutions

Test 3: The optimal solution for its 
LP relaxation is integer. 
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• Fathoming (Resolving the branching at fathomed the node)

In fact, there are 3 ways of 
fathoming:

Test 1: Its bound ≤ 𝑍∗

Test 2: Its LP relaxation has no 
feasible solutions

Test 3: The optimal solution for its 
LP relaxation is integer

If this solution is better than the incumbent, it becomes the new incumbent 𝑍∗, and 
test 1 is reapplied to all previous unfathomed subproblems using this new larger 𝑍∗

F(3)=fathomed 
with test 3
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• Continuing the example 

We now branch the 𝑥1 = 1 problem by 
branching 𝑥2 between 0 and 1 
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• Continuing the example 

𝑥2 = 0, 𝑥1 = 1
Maximize 𝑍 = 9 + 6𝑥3 + 4𝑥4

Subject to
Subject to: 
5𝑥3 + 2𝑥4 ≤ 4
𝑥3 ≤ 1
𝑥4 ≤ 0
𝑥3 + 𝑥4 ≤1
𝑥𝑗 ≥0 for 𝑗 = 3,4

  
𝑥2 =1, 𝑥1 = 1
Maximize 𝑍 = 9 + 5 + 6𝑥3 + 4𝑥4

Subject to: 
5𝑥3 + 2𝑥4 ≤ 1
𝑥3 ≤ 1
𝑥4 ≤ 1
𝑥3 + 𝑥4 ≤1
𝑥𝑗 ≥0 for 𝑗 = 3,4
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• Continuing the example 

𝑥2 = 0, 𝑥1 = 1
Maximize 𝑍 = 9 + 6𝑥3 + 4𝑥4

Subject to
Subject to: 
5𝑥3 + 2𝑥4 ≤ 4
𝑥3 ≤ 1
𝑥4 ≤ 0
𝑥3 + 𝑥4 ≤1
𝑥𝑗 ≥0 for 𝑗 = 3,4

  
𝑥2 =1, 𝑥1 = 1
Maximize 𝑍 = 9 + 5 + 6𝑥3 + 4𝑥4

Subject to: 
5𝑥3 + 2𝑥4 ≤ 1
𝑥3 ≤ 1
𝑥4 ≤ 1
𝑥3 + 𝑥4 ≤1
𝑥𝑗 ≥0 for 𝑗 = 3,4

Linear programming applied to these 
solutions yields

𝑥1, 𝑥2, 𝑥3, 𝑥4 = 1,0,
4

5
, 0 with 𝑍 = 13.8

𝑥1, 𝑥2, 𝑥3, 𝑥4 = 1,1,0,
1

2
with 𝑍 = 16
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• Continuing the example 

This is where we are now; no problem 
has been bound or fathomed at this 
step

Test 1: Its bound ≤ 𝑍∗ NO 

Test 2: Its LP relaxation has no 
feasible solutions NO

Test 3: The optimal solution for its LP 
relaxation is integer NO
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• Continuing the example 

Since the problem 𝑥2 = 1 has the 
larger Z we branch this solution 
splitting on 𝑥3
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• Continuing the example; note how both Z and the constraints change to 
adopt to the new values  

𝑥3 =0,  𝑥1 = 1, 𝑥2 = 1
Maximize 𝑍 = 14 + 4𝑥4

Subject to: 
2𝑥4 ≤ 1
𝑥4 ≤ 1
𝑥4 ≤1
𝑥𝑗 ≥0 for 𝑗 = 4

𝑥3 =1, 𝑥1 = 1, 𝑥2 = 1
Maximize 𝑍 = 20 + 4𝑥4

Subject to: 
2𝑥4 ≤ −4
𝑥4 ≤ 1
𝑥4 ≤ 0
𝑥𝑗 ≥0 for 𝑗 = 4

This was 5𝑥3 + 2𝑥4 ≤1

This was 5𝑥3 + 2𝑥4 ≤1

This was 𝑥3 + 𝑥4 ≤1

This was 𝑥3 + 𝑥4 ≤1
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• Continuing the example 

𝑥3 =0, 𝑥1 = 1, 𝑥2 = 1
Maximize 𝑍 = 14 + 4𝑥4

Subject to: 
2𝑥4 ≤ 1
𝑥4 ≤ 1
𝑥4 ≤1
𝑥𝑗 ≥0 for 𝑗 = 4

𝑥3 =1, 𝑥1= 1, 𝑥2 = 1
Maximize 𝑍 = 20 + 4𝑥4

Subject to: 
2𝑥4 ≤ −4
𝑥4 ≤ 1
𝑥4 ≤ 0
𝑥𝑗 ≥0 for 𝑗 = 4

Linear programming applied to 
these solutions yields no feasible 
integer solution

𝑥1, 𝑥2, 𝑥3, 𝑥4 = 1,1,0,
1

2
with 𝑍 = 16

𝑥1, 𝑥2, 𝑥3, 𝑥4 = no feasible solution
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• Continuing the example 

This is where we are now, with 
one solution fathomed and one 
open

No test failed

Test 2 failed
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• Continuing the example )

We now branch the problem with 
𝑥3 = 0 , but since only variable 𝑥4 is 
left fixing it generates directly a 
solution!

For 𝑥4 = 0 
𝑥1, 𝑥2, 𝑥3, 𝑥4 = 1,1,0,0 with 𝑍 = 14

For 𝑥4 = 1 
𝑥1, 𝑥2, 𝑥3, 𝑥4 = 1,1,0,1 unfeasible 
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• Continuing the example 

This solution has been 
revised in light of the 
new incumbent
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The solution is laborious, Needs 
book-keeping of how objective and 
constraints change in the various 
branches, and repeated recourse to 
LP, simplex calculations 
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Some take home points

Integer programming and linear programming: 
LP=convex polyhedron touched by the hyperplane 
of the objective function; the IP solutions instead 
are isolated point inside the polyhedron 

Find these points may not be easy but the LP 
solution is an upper bound for the 𝑍 of IP 

Source (both images): Wikipedia Commons

Panettone with 
raisins inside

Source: https://leitesculinaria.com/478/recipes-cranberry-
pistachio-panettone.html
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Homework
1) Write the equations for this 
transportation problem knowing that 
freight cost for each shipment is $100 
plus 50 cents per mile. How much 
should be shipped from each plant to 
each of the distribution centers to 
minimize the total shipping cost?
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Homework
2) Consider the following 
directed network (Hillier 
10.2-1) 

(a) Find a directed path from node A to node F, and then identify three other 
undirected paths from node A to node F.
(b) Find three directed cycles. Then identify an undirected cycle that includes every 
node.
(c) Identify a set of arcs that forms a spanning tree.
(d) Use the process illustrated in Fig. 10.3 to grow a tree one arc at a time until a 
spanning tree has been formed. Then repeat this process to obtain another spanning 
tree. [Do not duplicate the spanning tree identified in part (c).]
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Homework 3) You need to take a trip by car to another town that you have never visited 

before. Therefore, you are studying a map to determine the shortest route to your destination. 
Depending on which route you choose, there are five other towns (call them A, B, C, D, E) that you 
might pass through on the way. The map shows the mileage along each road that directly connects 
two towns without any intervening towns. These numbers are summarized in the following table, 
where a dash indicates that there is no road directly connecting these two towns without going 
through any other towns. Formulate this problem as a shortest-path problem by drawing a network 
where nodes represent towns, links represent roads, and numbers indicate the length of each link in 
miles.
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Homework 4) Find shortest path from 𝑂 to T , first visually then using 
the table method and backward recursion studied in Lesson 4 (Hillier 
10.3-4); the first row of the table in give below.  

4 4
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www.andreasaltelli.eu
https://orcid.org/0000-0003-4222-6975

@AndreaSaltelli@mstdn.social
https://www.youtube.com/channel/UCz26ZK04xchekUy4GevA3DA

Thank you
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