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Abstract: Sensitivity Analysis (SA) of model output investigates the relationship between the 
predictions of a model, possibly implemented in a computer program, and its input parameters. 
Such an analysis is relevant for a number of practices, including quality assurance of models and 
codes, and the identification of crucial regions in the parameter space. This note compares 
established techniques with variants, such as a modified version of the Hora and Iman importance 
measure (SANDIA Laboratory Report SAND85-2839, 19891, or new methods, such as the 
iterated fractional factorial design (Andres, Hajas, Report in prep. for AECL, Pinawa, Canada, 
1991). Comparison is made on the basis of method reproducibility and of method accuracy. The 
former is a measure of how well SA predictions are replicated when repeating the analysis on 
different samples taken from the same input parameters space. The latter deals with the physical 
correctness of the SA results. The present article is a sequel to an earlier study in this journal 
(Saltelli, Homma, Comp. Stat. and Data Anal. 13 (1) 1992, 73-94 of limitations in existing SA 
techniques, where the inadequacy of existing schemes to deal with non-monotonic relationships 
within the model was pointed out. 

International benchmark test models were taken from the field of performance analysis of 
nuclear waste disposal in geological formations. The results based on these models show that the 
modified version of the Hora and Iman method proposed in this paper is extremely robust, when 
compared with the other existing statistics, even in the presence of model non-monotonicities. 
This importance measure is accurate, although its application is demanding - in terms of 
computer time - for system with very large numbers of input parameters. Its predictions are also 
among the most reproducible. The newly proposed iterated fractional factorial design appears to 
score the best in reproducibility. The accuracy of this latter method demands further investigation. 
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1. Introduction 

The present study investigates the performances of statistical techniques which 
are currently used in Sensitivity Analysis (SA) for computer codes. 

More specifically Probabilistic System Assessment (PSA) computer models 
are considered, which are used to estimate the distribution function of model 
output functions by repeatedly sampling input parameter values from assigned 
distributions [26]. For these models an analysis of the output/input relationship 
requires more than a point derivative of the output with respect to the model 
input parameters, given the multivariate nature of the input and the fact that 
the range of uncertainty which affects the input parameters can be large. 

When dealing with this type of model it is customary to use SA estimators 
which yield a global measure of sensitivity, where the influence of a given 
parameter on the output is averaged both on the distribution of the parameter 
itself and on the distributions of all the remaining parameters (global SA 
techniques). On the other hand methods such as differential analysis or the 
Adjoint Method give sensitivity measures relative to single points in the multi- 
dimensional space of the sample [15,14]. 

It can be observed that the use of global SA techniques is not limited to PSA 
models and codes. In fact every model is likely to have uncertain input 
parameters; similarly the range of uncertainty is likely to change from parameter 
to parameter, and a thorough analysis of model response over the entire space 
of input parameter values may well be considered as an indispensable part of 
model/code quality assurance process. For a discussion of Monte Carlo based 
SA see also [12,15] and Appendix in [7]. 

Several SA techniques are described in the literature, and a few intercompari- 
son studies are also available. A study of the performance of sensitivity analysis 
techniques on different test models was performed by Iman and Helton [14,15]. 
These studies pointed out the effectiveness of the regression based non-para- 
metric techniques such as the Standardised Rank Regression Coefficient (SRRC) 
and Partial Rank Correlation Coefficient (PRCC). Differential analysis and 
response surface analysis based on fractional factorial design were also investi- 
gated by these authors. 

The present work partially reproduces another intercomparison exercise 
based on the Level 0 test case [30], where a variance analysis was done on the 
predictions of several SA techniques. The main finding of this previous work 
was a confirmation of the higher reproducibility of the SRRC, PRCC estimators 
both with respect to their parametric equivalent and to the other non-paramet- 
ric tests being investigated. The reason for repeating the analysis on a different 
sample is mainly to compare the performances of these tests with the new ones 
introduced in Section 3 on a larger set of test cases. 

The search for better estimators arises from another study where three 
different test cases were used to discuss the inadequacy of available nonpara- 
metric statistics in presence of model non-monotonicity [29]. The same paper 
also mentioned in its conclusions that the Hora and Iman importance (see 
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Section 31 measure might overcome these difficulties, since this method - at 
least in principle - is not affected by the degree of monotonicity of the model. 
The present work is intended to test such an hypothesis. 

It should be pointed out that SA method performance is model dependent. 
SA is easier for linear models than for non-linear ones, and for monotonic 
rather than for non-monotonic ones. SA is also dependent on how the output 
variables are considered. Rank or logarithmic transformations of the output are 
often employed, which have a great influence on the relative importance of the 
input parameters. Also, different SA estimators point to different types of 
variables. For instance a linear correlation measure will give higher weight to a 
parameter influencing the output in a linear fashion, whereas a rank based 
version of the same measure will highlight parameters whose rank is linearly 
correlated to the ranked output (this is the case with the Pearson and Spearman 
coefficients, see Section 3). When the output distribution ranges over more than 
one order of magnitude this can lead to diverging results, as the linear SA 
estimators will be strongly sensitive to the values in the upper tail of the output 
distribution, while rank-based estimators will give equal weight to all the values 
in the distribution [29,30]. This can lead to a considerable degree of the 
subjectivity in the interpretation of the results as well as in the choice of the 
proper SA estimator. 

Comparing the performances of SA techniques requires a definition of the 
properties on which the comparison must be based. This has been attempted in 
the present paper by considering an SA estimator as a measuring instrument. In 
experimental physics instruments are normally characterised with respect to 
three main properties: precision, reproducibility and accuracy. Precision usually 
indicates how many digits can be effectively read out of the instrument display 
(or which is the smallest value of the quantity under examination which the 
instrument can detect or differentiate). Reproducibility deals with the instru- 
ment capacity of yielding the same result when measuring repeatedly the same 
sample. Accuracy is “the extent to which the results of a calculation.. . ap- 
proach the true values of the calculated.. . quantities, and are free of error” [18]. 

When using global SA estimators as in the present study the precision deals 
with how many variables can be considered as successfully ‘ranked’, ’ or identi- 
fied as influential; this can be done using hypothesis testing [5]: for any SA 
estimator a test statistic is generally available to indicate, at a given significance 
level, which variables have significant values and which do not. The threshold 
estimator value depends upon the significance level as well as upon the size of 
the sample available for the analysis. In the context of hypothesis testing the 
relative efficiency (precision) of different tests can be compared for given values 

’ There is a possible source of confusion in the fact that the term “ranking” is used here both for 
the process of replacing data with ranks and for the ordering of the influential variables (eg. the 
most influential variable has rank one). The context should make clear which is which. 
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of significance level and of power [5]. This aspect of the problem is not 
addressed in the present paper. 

The reproducibility of an estimator is closely related to its precision, and, in 
the present context, it can be defined as the extent to which the test produces 
the same variable ranking when repeating the analysis on a different sample of 
the same size. 

The approach taken in the present study focuses on technique reproducibility 
and accuracy. The reproducibility of the different sensitivity analysis estimators 
is measured through an empirical variance analysis on selected models, in which 
the SA estimator predictions are compared over different samples of the same 
size. The analysis is then repeated at a different sample sizes (see Section 4). 

The analysis of a technique’s accuracy is a more delicate point. Because 
different techniques look at different aspects of the input-output relationship it 
is possible that different predictions (rankings) are in fact both correct, provid- 
ing complementary information on the system. As mentioned above a given 
input parameter can influence the output more than the rank of the output, or 
the output mean more than the output variance and so on. At the same time a 
given technique can fail while another gives the correct answer (see Section 8). 
There is no automated procedure to study the technique accuracy (in fact there 
are no standards to compare with). In the present work deductions largely rely 
on the knowledge of the mathematical structure of the model being investigated. 

Two test models are considered in this study. Both of them have been used in 
previous works [29,30] and pertain to the field of nuclear waste disposal safety 
analysis. The first one can be considered as a worst case model for SA, being 
non-linear, non-monotonic and censored (many output values are zero). This 
test case is mainly used to investigate technique reproducibility. The second one 
is less pathological, though it displays interesting non-monotonic features which 
are suitable for discussion of technique accuracy. These models are used to 
discuss the effectiveness of the modified Hora and Iman method proposed in 
this work as compared with those of the existing SA estimators with respect to 
both accuracy and reproducibility. Results are available for the iterated frac- 
tional factorial method for only the first of these models. 

2. Test cases 

The test cases employed in the present work have been the object of interna- 
tional intercomparison exercises. They pertain to the field of the analysis of the 
environmental impact of radioactive waste disposal in deep geological forma- 
tions using Monte Carlo codes. The exercises, named Level 0 and Level E, are 
the first of a series of benchmarks being conducted within the PSAC (Probabilis- 
tic System Assessment Code) User Group. This body, active since 1985, is 
coordinated by the Nuclear Energy Agency (NEA) of the OECD [4,25,28].’ 

Because of their nature as benchmarks, both models are well documented. 
Furthermore the software employed in the present study has been tested in the 



A. Sultelli, T.H. Andres, T. Homma / Sensiticity analysis of model output 215 

Table I 

Description of parameters to be treated as random variables in the Level 0 exercise. 

Notation Definition Distribution Attributes a Units 

RLEACH leach rate loguniform 
XBFILL buffer thickness uniform 
XPATH geosphere path length uniform 
V ground water velocity loguniform 
DIFFG geosph. diff. cocff. normal 
ADISPG dispersivity in the geosph. loguniform 
ABSR water extraction rate uniform 
RMW water ingestion rate uniform 

BD(Cs) sorpt. const. in the buffer lognormal 

BD(I) sorpt. const. in the buffer lognormal 

B3(Pd) sorpt. const. in the buffer lognormal 

BD(Se) sorpt. const. in the buffer lognormal 

BD(Sm) sorpt. const. in the buffer lognormal 

BD(Sn) sorpt. const. in the buffer lognormal 
BD(Zr) sorpt. const. in the buffer lognormal 

KD(Cs) sorpt. const. in the geosph. lognormal 

KD(I) sorpt. const. in the gcosph. lognormal 

KD(Pd) sorpt. const. in the gcosph. lognormal 

KD(Se) sorpt. const. in the geosph. lognormal 
KD(Sm) sorpt. const. in the geosph. lognormal 

KD(Sn) sorpt. const. in the gcosph. lognormal 

KD(Zr) sorpt. const. in the geosph. lognormal 

/0.00269, 12.9/ 

/OS, 5/ 
/lOOO, 10000/ 
/O.OOl, O.l/ 
mean = 0.04, std = 0.001 

/2,200/ 
/5x 105, 5 x IOh/ 
/0.7, 0.9/ 
mean = 0.46, std = 0.86 
mean = -5.07, std = 1.34 
mean = - 1.91, std = 0.669 
mean = - 2.38, std = 0.143 
mean = - 2.13, std = 0.605 
mean = - 1.77, std = 0.729 
mean = - 0.71, std = 0.5 
mean = - 1.46, std = 1.6 
mean = - 6.07, std = 2.6 
mean = -2.91, std = 1.4 
mean = - 3.38, std = 0.3 
mean = -3.13, std = 1.2 
mean = - 2.77, std = 1.4 
mean = - 1.71, std = 1.0 

kg/m’/a 
m 
m 
m/a 
m*/a 
m 
m’/a 
m’/a 
m”/kg 
m’/kg 
m’/kg 
m”/kg 
m’/kg 
m’/kg 
m”/kg 
m’/kg 
m3/kg 
m’/kg 
m’/kg 
m’/kg 
mi/kg 
m”/kg 

’ For uniform and loguniform distributions the Attributes are the interval endpoints. For the 
normal distributions these arc the mean and the standard deviation. For the lognormal 
distributions mean and standard deviation refer to the logarithm (base IO) of the variable. 

intercomparison process. Another advantage of these models is that they appear 
quite complex as far as the input-output relationship is concerned, whilst being 
computationally not too expensive to run. 

The test models involve the computation of the dose to man resulting from 
migration of selected radionuclides through a multi-barrier system (waste form, 
near field, far field, biosphere). Model input parameters can either be given as 
constants or as distributed parameters. The output being compared is the 
frequency distribution of the output dose. Comprehensive reports describe both 
Level 0 [19] and Level E [20]. A more succinct description can be found in [29]. 
In this note only the essential elements are given. 

The Level 0 model contains very simple barrier sub-models, in the form of 
easy to compute analytical formulae. Seven uncorrelated isotopes are consid- 
ered and a total of 22 input parameters are taken as uncertain. The distribution 
characteristics are given in Table 1. It can be seen that large ranges of variation 
(orders of magnitude) are involved. The mean annual dose as a function of time 
is shown in Figure 1 for the sample employed in the present study (2.500 runs). 
The same figure also gives the confidence bounds on the mean [24] and the 
output annual dose from the 5 simulations yielding the highest peaks. For each 
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Log (Annual 
dose, Sv/a) 

-4 

-6 

-8 

!iJ i 
Log (time, years) 

Fig. 1. 

I Mean and bounds 

simulation the output vector contains mostly zeros (no dose), the dose pulses 

reaching the biosphere as sharp peaks or square waves. Consequently for each 

time point there is a large percentage of zero output, which results in ties when 
the rank of doses are taken. Model coefficients of determination (Section 3) are 
also very low for this model (Figure 2). 

For these reasons the variable ‘maximum dose between 0 and the considered 
time point’ has been used in the present study. The percentage of non-zero 
outputs for this variable is given in Figure 3. It can be seen that in spite of the 
variable transformation the percentage of non-zero outputs is still low for the 
first time points. The same figure also plots the model coefficients of determina- 

R squared 
0.3 I 

l;;OOO 100000 1000000 1000000 

Time, y 

- R .qu.r.d (raw data) + R .qu.nd (rank*) --*i Non-zaro OUtPUt. 

Fig. 2. R squared coeff. for Level 0 - dose. 
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R squared 
1 

10000 100000 1000000 1000000 

Time, y 

-R .q”and (raw data) + It aquared hnka) -c Non-zmrq D”LP”1. 

Fig. 3. R squared coeff. for Level 0 - max. dose. 

tions for the regression models based on the raw values and on the ranks. The 
large difference between the values of these two coefficients demonstrates the 
non-linearity of the model. 

The Level E test case is computationally more demanding. The geosphere 
model includes a two layers pathlength where dispersion, advection, decay and 
chemical retention have to be modeled for the 1129 isotope and for the 
Np237-U233-Th229 radionuclide decay chain. The characteristics of the twelve 
distributed parameters are given in Table 2. It can be seen that the parameter 

Table 2 

Description of parameters to be treated as random variables in the Level E exercise. 

Notation Definition Distribution Attributes 
(endpoints) 

Units 

CONTIM 
RELRI 
RELRC 
FLOWVI 

PATHL 1 
RETFlI 

RETFlC 

FLOWV2 

PATHL2 
RETF2I 

RETF2C 

STFLOW 

containment time 
leach rate for Iodine 
leach rate for Np chain nuclides 
water velocity in geospherc’s first 

layer 
length of gcospherc’s first layer 
geosphere retardation cocff. for 

Iodine (first layer) 
factor to compute geosphere 

retardation coeff. for Np chain 
nuclides (first layer) 

water velocity in geosphere’s second 
layer 

length of geosphere’s second layer 
geosphere retardation coeff. for 

Iodine (second layer) 
factor to compute geospherc 

retardation coeff. for Np chain 
nuclides (second layer) 

stream flow rate 

uniform 
log-uniform 
log-uniform 
log-uniform 

/loo, lOOO/ 
/lo-“, 10-I/ 
/lo-“, 10-s/ 
/lo-‘, lo-‘/ 

uniform 
uniform 

uniform 

log-uniform 

uniform 
uniform 

uniform 

log-uniform 

/ 100,500/ 

/I, 5/ 

/3,30/ 

/50, 200/ 

/I> 5/ 

/3,30/ 

/lO’, 107/ 

a 
a -I 

a-l 

m/a 

m 
- 

- 

m/a 

m 
- 

- 

m”/a 
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-3 

Log (Annual 
dose, Svia) 

-4 

-5 

-6 

-7 

-8 

-9 

-10 

Mean and bounds 

7 I 4 5 6 

Log eime, years) 

Fig. 4. 

variation is less pronounced than for Level 0, and the spread in results among 
the various runs is also less severe. 

The mean total dose for a sample of size 2500 is shown in Figure 4, where the 
first pulse is due to the 1129 contribution and the second one to the Np237 
chain. In this figure the annual dose from the 5 ‘highest pulse’ simulations is 
also given. 

The model coefficients of determination and the percentage of non-zero 
output are given in Figure 5. Because the percentage of non-zero runs is much 
higher than for the Level 0 case, both the total dose and the maximum total 
dose (Figure 6) have been taken for the variance analysis. Interesting in this test 

100000 

Time, y 

Fig. 5. R squared for Level E - dose. 
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R squared for Level E - Max. dose 

R squared 
1.2 

. . . . . . . . . . . . . . . . . . . ..~........................__............._... 
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1000 10000 100000 

Time, y 
1000000 1000000 

- R .quard (raw data) + R .‘,uarad hnka) + Non-mro 

Fig. 6. R squared for Lcvcl E - max. dose. 

case is the multi-modal shape of the model coefficient of determination on 
ranks, which oscillates between values higher than 0.9 (very efficient regression 
model) and values below 0.1 (useless regression model) for the output variable 
‘total dose’. 

Model computation times ranged from a less than a hundredth of second per 
run for the Level 0 to an average of 0.6 seconds per run for Level E using the 
JAERI Fujitsu FACOM-M780 computer (about 33 mips). 

3. Sensitivity analysis methods 

The Sensitivity Analysis estimators investigated in the present work include 
several parametric and non-parametric techniques, based on regression-correla- 
tion measures, as well as some two-sample tests, some variance reduction 
methods, the ‘Importance Measure’ test and an iterated fractional factorial 
design method. For the sake of conciseness the tests are referred to in the text 
by the abbreviated name used in the computer program. A list of the tests and 
abbreviations is given below. 

Pearson Correlation Coefficient PEAR 
Spearman Rank Correlation Coefficient SPEA 
Partial Correlation Coefficient PCC 
Partial Rank Correlation Coefficient PRCC 
Standardised Regression Coefficient SRC 
Standardised Rank Regression Coefficient SRRC 
Smirnov Test Statistic SMIR 
Cramer-Von Mises Test Statistic CRAM 
Mann-Whitney Test Statistic TMWT 
Two-sample t Test Statistic TTST 
Input distribution shrinking approach SHRI 
Input distribution shifting approach SHFT 
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Hora and Iman Importance Measure HIM 
Modified Hora and Iman Importance Measure HIM * 
Iterated Fractional Factorial Design IFFD 

The reproducibility of the first 10 tests (PEAR though TTST) has already 
been investigated in the variance analysis study mentioned in the Introduction 
[30], using a different sample of the same test model. The tests are all 
extensively described in the literature and only their essential features are 
recalled here. 

The last four methods, SHRI, SHFT, HIM and IFFD have been recently 
proposed and - to the authors’ knowledge - their reproducibility has not yet 
been investigated. 

PEARS and SPEA are the usual correlation coefficients based on the raw 
values and on the ranks, respectively [5]. 

PCC and its rank equivalent PRCC are also correlation measures which look 
at the degree of correlation between output and any input variable by removing 
the effect due to existing correlations between this variable and any other input 
variable [10,16]. It should be mentioned that in the present study no correlation 
is imposed on the input variables, apart from that arising stochastically from the 
sampling. 

SRC and SRRC are regression based measures, i.e., they are the coefficient 
for the regression model of the system. The coefficients refer to the standard- 
ised input and output variables obtained by subtracting the sample mean from 
the original values and dividing by the sample standard deviation [10,16]. When 
using these coefficients it is useful to consider the model coefficient of determi- 
nation Rz (on raw values or ranks) which gives the percentage of the variance of 
the input data reproduced by the regression model. Rc values close to one 
indicate an effective regression model, and hence the possibility of ranking the 
model parameters based on regression model coefficients. Low Rf values 
indicate a poor regression model; a low percentage of the data variance is 
accounted for, so that the ranking of the parameters based on their contribution 
to this fraction loses significance. 

SRC and PCC always produce the same ranking, unless significant correla- 
tions are imposed on the input variables [16], which is not the case of the 
present study. The same applies to SRRC and PRCC, so that the use of both 
methods is redundant for this particular application. Previous studies [29,30] 
have pointed out the high correlation existing between the predictions of SRRC 
(and PRCC) with the other non-parametric tests such as SPEA and, to a lesser 
extent, SMIR, CRAM, TMWT. This implies that when the Rz (on ranks) 
coefficient flags an inadequate regression model, also the predictions from these 
other non-parametric tests are impaired. 

SMIR and CRAM tests are both ‘two-sample’ tests designed to check the 
hypothesis that two samples belong to the same population [5]. They are used in 
SA by partitioning the sample of the input variables according to the quantiles 
of the output variable distribution. In the present application one subsample 
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collects all the input values for the selected input variable which correspond to 
the 10% highest output values. The second sub-sample collects the remaining 
values. The tests are based on differences in the cumulative distributions of the 
two sub-samples [5]. 

TTST and TMWT are also two-sample tests, used in this application with a 
lo-90% splitting of the input sample as described above. These tests check the 
means of the two sub-samples. Their interest mainly lies in the fact that TTST is 
the exact parametric equivalent of TMWT, i.e., TMWT is the same as TTST if 
the sample values are replaced by their ranks [5]. 

The SHRI and SHFT estimators originate from another benchmark of the 
PSAC group, the Level S [22]. This exercise addresses sensitivity analysis on the 
Level E test model. The participants in Level S are asked to rank the 
parameters of the Level E exercise based on the answer to two distinct 
questions: 

(1) What is the reduction in output variance associated with a 10% reduction in 
the range of the input parameter distribution (5% on each side)? 

(2) What is the shift in output mean associated with an upward 5% shift in the 
mean of the input parameter distribution? 

The exercise is facilitated by the fact that the input distributions for the Level 
E model are either uniform or loguniform, so that an analytical, hence exact, 
solution is available for both questions (1) and (2) [22]. Although the results 
from Level S are not discussed in the present work it was felt that an analysis of 
the performances of SHFT and SHRI might be of interest. In the present study 
the numerical value of SHRI is computed as follows: For each parameter the 
output sample is censored by excluding all the values which correspond to values 
of the input variable under consideration below the 5th percentile and above the 
95th percentile of its distribution. The variance of the censored sample is 
computed ‘and SHRI is evaluated as the ratio of the censored versus the 
uncensored sample variance. SHFT is similarly computed as follows: for each 
input variable the inputs are sorted in ascending order and values in the lower 
tail are dropped till a 5% increase in the parameter mean is achieved. The 
output is censored by excluding the values corresponding to the dropped inputs. 
The mean of the censored sample in computed. Its ratio to the mean of the 
uncensored sample constitutes the numerical value of SHFT. 

The importance measure proposed by Hora and Iman [8] is used in this work 
following a computational scheme suggested by Ishigami and Homma [17]. Its 
derivation is repeated here as it will be needed when discussing the modified 
version of the test. 

Let the output variable Y be a function of K variables 

Y=h(X,,X,, . ..X.). (3.1) 
Assuming that the input is composed of independent random variables the 

joint Probability Density Function (PDF) of the input is 

f(X,> x,, ..* xK) = lfYIl;Cxi). (3.2) 
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Mean and variance of Y can then be expressed as 

(3.3) 

~~=l/***/(h(Xl, X2, . ..X~)-(Y)JLi.f;(Xi)dX, 
1 

=ll.../(W1, x2, . ..X.)}'fir,cX,, dX,- (Y)‘. 
1 

(3.4) 

Let now V,,(Zj) represent the output variance when the input variable Xj is 
fixed to its value Zj 

~~(~j)=ll...l(h(XI, X2, ...~j, . ..X.)o(~j),)‘ir~icx,) dX, 
i=l 
i#j 

=/l--*l(h(Xl> x2> zj> ...X~))2i;r;(Xi) dXi-(h(~j)>2, 
i=l 
i#j (3.5) 

where ( h(_Zj)) is the mean of the output Y when the variable Xi is fixed to the 
value Zj, i.e., 

(h(ij)) =//***_/h(Xr, X2, ..*ij, . ..XK)[fifi(Xi) dXi* 

i#j 

(3.6) 

The dependence of the variance V,(_2j) upon the specific value Zj can be 
eliminated by averaging V,,(_i!j) according to the PDF of Xi to yield 

I’; = /Vy( Zj)fj( ii) dij. (3.7) 

Substituting Equation 3.5 in Eq. 3.7 gives 

v;= // . . . /{/2(X,, x2, . . . XK)}‘i;fi(Xi) dXi - /(h(Zj))2fi(_2j) dij. 
i=l 

Comparing Equations 3.4 and 3.8 leads to the relation 

V,- Vi= q. - (Y>2, (3.9) 

where 

q = /(h(fj))2f,(ij) dZj. (3.10) 

According to Hora and Iman the measure of importance is defined as the 
square root of the difference in Equation 3.9, i.e., 

Ij=/~=g-qiy. (3.11) 
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Since the quantity (Y)’ is a constant, the variable ranking is in fact based on 
the values of L$., i.e., variable k is more important than variable j if U, > L$. 

The importance measure is hence related to the computation of the integral 
in Equation 3.10. Assuming that the model does not allow an analytical 
determination of this integral a Monte Carlo method can be applied. The 
computation requires the average h(xj) to be computed, and the integral (3.10) 
to be evaluated by integrating on all the possible values of ij. The number of 
simulations required for this computation is hence M*N, where M is the mesh 
size used to compute the integral (3.10) and N is the sample size used in 
evaluating /I(.?~) for the specified Xj value. This calculation method is too 
expensive and impractical. 

In order to find a more effective computation scheme q can be rewritten as 

[I71 

ui=/ ll...lh(X,, X2, ...Xj, . ..X.)~~i(X~) dXi 

i i=l 
*~j(xi) dx’j 

i#j i 

=ll...lh(X,, X2, . ..x’j. ...xK) xh(X;, x;, ...~j, ...x~) 

(3.12) 

The above equations shows that Uj is nothing more than the expectation 
value of the function 

H(X,,X,...X,,X;,X;, ...X;_,,X;+l, . ..Xfo=hxh* 

=h(X,, X2, . . .XK) x h(X;, X;, . ..X.+ X,, X/lfl, . ..X.$ (3.13) 

of a set of (2K - 1) independent variables. Assuming again that N is the sample 
size usually employed to estimate the expectation value of the output, the 
number of model executions needed to compute the expectation value of this 
function is simply 2N, because the function H is expressed as a twofold product 
of the original model function h. For any given run of the PSA computation H 
can be evaluated by multiplying h, computed from a sampled vector of the K 
input parameters, with h*, computed by resampling all the parameters but the 
jth one (see next section). The total number of model executions needed to rank 
all the variables is N times (1 + K), where K is the number of variables. 
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Fig. 7. Base sample matrix and HIM sample for two generic variables X, and X,. (Note that the 
input matrix for the two generic variables only differ for columns “j” and “I”. N and K indicate 
the number of runs and the number of variables respectively. The HIM for variable X, is simply: 

HIM(j)=EE,y,y//N.) 

In the following the convention of Figure 7 will be taken, using r, to indicate 
the base vector of the values of the function h above, and r. for the h* function 
vector. The elements of y, and 7. will be indicated with yi and yi respectively, 
with i= 1, 2, . . . N. The summation for HIM in Figure 7 will be always greater 
for correlated & and E; vectors than for uncorrelated ones. 

The IFFD estimator was developed by Andres [3] for sensitivity analysis of 
the Canadian SYVAC3-CC3 mode1 of a nuclear fuel waste disposal site [6]. 
Critical issues for that application were: 
(a) SA of a mode1 having thousands of parameters; 
(b) SA with a minima1 number of simulations because of the computer time 

involved in running the model; 
(c) Identification of parameters having a nonmonotonic effect on an output 

variable. 
IFFD differs from the other methods tested in that parameter values are 

chosen according to a statistical design, rather than being randomly sampled. 
Three levels of each parameter are selected: a low value, a middle value, and a 
high value. To standardize the treatment of each parameter, these levels are 
chosen to be specific quantiles of the probability distribution used in the Monte 
Carlo approach for sampling the parameter. The results quoted in sections 5 
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and 6 were based on the 0.05, 0.50 (median), and 0.95 quantiles. The benefit of 
using discrete parameter values is to reduce the variance of any SA estimator. 
The disadvantage is that it is possible to fail to identify a parameter that has an 
effect on the output variable over a small part of its domain. The 3-level design 
chosen can detect linear and quadratic effects. 

The statistical design consists of multiple iterations of a simple 2-level 
fractional factorial design. In each iteration, parameters are randomly grouped 
together (aliased). The design is further randomized in each iteration by 
randomly assigning groups to variables of the design, and by randomly orienting 
each parameter with others in its group (i.e., some parameters in a group take 
high values when other parameters take low values). 

The iterated design is converted from a 2-level design to a 3-level design by 
setting a parameter to its middle value in all simulations of a few randomly 
selected iterations. 

A typical iterated design uses 256 simulations to identify up to 8 important 
parameters out of as many as 4000 parameters. The design consists of 16 
iterations of a 16-simulation 2-level fractional factorial design. Each parameter 
takes a middle value in 4 randomly selected iterations out of the 16. In each 
iteration, parameters are assigned to 8 groups. The fractional factorial design is 
of Resolution IV, so that the linear effects of each group can be determined 
without being confounded with two-way interactions among the groups. If the 
number of important parameters is very small, it is possible by analyzing just one 
iteration (i.e., 16 simulations) to identify the groups containing those parame- 
ters. After several iterations, the important parameters can be identified as the 
parameters belonging to a succession of important groups. 

This screening process is best accomplished using stepwise regression. Each 
important parameter will give rise to copycats; these are unimportant parame- 
ters that by chance shared a group with the important parameter several times. 
Their linear effects will be correlated with that of the important parameter. By 
using stepwise regression, we may remove the contribution of each important 
parameter as it is identified, thereby eliminating the copycats. It is possible to 
apply the screening process in an efficient way based on the structure of the 
design, without actually applying stepwise regression to a matrix with 256 rows 
and 4000 columns. The details are described in [3]. IFFD works well in 
applications where there are a few important parameters, hidden among a large 
set of unimportant parameters. 

In situations where there are many equally important parameters, IFFD will 
tend to give spurious results. One effective way to determine if IFFD is giving 
meaningful results in a particular application is to use dummy parameters. For 
example, the 256-simulation method described above could be applied to a data 
set containing 2000 true parameters used by a model, and 2000 dummy parame- 
ters that are not used. As long as the stepwise regression procedure generates 
parameters from the true parameter set, one can be confident that real effects 
are being found. When the procedure identifies a dummy parameter as impor- 
tant, all subsequent parameters generated by stepwise regression are suspect. 
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This procedure was used in the comparison described below to rank a subset of 
the parameters being studied. 

4. Computational scheme 

The reproducibility of the techniques has been investigated by an empirical 
variance analysis conducted on the two selected test cases. 2 The variance 
analysis approach is conceptually very simple, though its application in conjunc- 
tion with the HIM method is somewhat laborious. Letting aside for the moment 
the complications introduced by HIM, the procedure can be described as follows 
(see Figure 8). 

First a large sample of size N is generated which contains, for eacbof the N 
runs, the output time series and the sample input parameter values. In the Level 
0 case, for example, the input data set contains 2500 runs. For each run the 
values assigned to the 22 sampled variable values and total dose values for 12 
selected time points are given. The large sample is then partitioned, i.e., 
subdivided into smaller samples of identical size Ni, such that CNi I N. In the 
Level 0 example, 6 such partitions are generated: 

1st partition : 5 sub-samples of size 500; 
2nd partition : 6 sub-samples of size 416; 
3rd partition : 7 sub-samples of size 357; 
4th partition : 10 sub-samples of size 250; 
5th partition : 25 sub-samples of size 100; 
6th partition : 50 sub-samples of size 50. 
All the partitions are made of the same 2500 runs of the starting large 

sample. A separate variance analysis is performed for each partition. Take the 
first partition and the statistical technique SRRC as an example; the SRRC 
values for each variable at each time point are computed for each of the 5 
sub-samples in the first partition. Based on the SRRC estimator’s value at each 
time point and in each partition the input variables are ranked (rank 1 for the 
most important, rank 22 for the least important). These ranks are then con- 
verted into Savage scores [15] and the variables’ score for the five partitions at 
each time point are stored. 

For each variable and each time point the mean and variance of the scores 
over the 5 subsamples are computed. Call this variance var(SRRC, ntime, near, 
500). The mean value over all the variables and time points of this quantity is 
the desired variance of SRRC at the sample size 500. Call it var(SRRC, 500). 
The same is repeated for all the techniques (PEAR through IFFD) and for all 
the partitions (sample sizes 50 through 500). 

The discussion of Sections 5-7 is based on the values of varctechnique, 
sample size) so obtained. The reason for the use of the Savage scores (Figure 8) 

* The expression “variance analysis” does not refer in this context to ANOVA-like tests, but to a 
mere measurement of variance over different samples. 
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Step 1) Compute sample of large size N. For instance, in Level 0, N=2500. 

Step 2) Break it down into subsamples of smaller size Ni, such that 

CNi=N 
i 

(for instance Ni = 500; 5 sub-samples). 

Step 3) For each of these subsamples Si perform sensitivity analysis on the se 
lected output variables (here dose at time point) using the SA tech- 
niques under analysis. Eg for SRRC compute 

SRRC(YZZXU,TZti~e,Si) 
(value of SRRC computed for subsample St, variable mar and dose at 
time point ntime ). 

Step 4) Convert SRRC(nvar,ntime,Si) to rank, ie to the order of importance 
given by SRRC to variable mar at time point Mime obtaining 

Rank(SRRC,nvur,ntime,Si). 
In Level 0 the most important variable is assigned rank 1 and the least 
important rank 22. 

Step 5) Convert rank to Savage score as 
K 

Score(nvur,ntime,Si) = C i 
m=R 

where R = Rank(SRRC,nvar,ntime,Si). Given K=22, for R=l 
score=3.691; for R=22 score=0.0455. 

Step 6) Determine the mean and the variance of Score(nvur,ntime,Si) over the 
5 subsamples Si; call this latter 

var(SRRC,nvur,ntime,Ni) 
where Nt indicates that the value is relative to the sample size (eg 500) 
under consideration. 

Step 7) Average var(SRRC,nvur,ntime,Ni) over the K variables and 12 selected 
time points t o obtain 

var(SRRC,Ni) 
which is the statistic presented in Figures 10,14,15. 

Step 8) Repeat steps 3) to 7) above for a different subdivision of the base sam- 
ple, eg 10 subsamples of size 250. 

Figure 8 - Variance Analysis Scheme 
Procedure adopted for the Variance Analysis as exemplified by the applica- 

tion to the Level 0 test case. 
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The output from SI’OI’is (generally) time dependent. For each time point 

/TIME = 9.OE+04 Yi 
SpOPoutputs the mean and standard deviation of the output under consideration 

EXPECTED VALUE OF YVAR = 0.271E-07 S”,Y +,- 0.9886-08 ,TCHEBYCHEFF BOUNDS). ST. DE”. IS : O.llOE-06 
Then for the given sample size and significance level 

SRMPLE SIZE: 2500. SIGNIFICANCE LEVEL ALPHA = 0.050 

the quantiles of the test distributions, eg 

Q”RNTILE~RLP”A,P, FOR THE SPEARMAN TEST DISTR. = -0.3928-01 

the model coefficients of determination based on SRC, SRRC 

MODEL COEFFICIENT OF DETERMINATION = 0.036 (ON ROW “Al.“ES~ and 0.088 (ON RANKS, 

the value of the SA estimators 

and the corresponding rank table. 

PEAR SPEA PCC PRCC SK SRRC SMlR CRAM TTST TMWT SHRI SHFT HIM HIM+ 
FLOW”1 4.00 6.00 4.00 6.00 4.00 6.00 2.00 2.00 2.00 9.00 5.00 4.00 2.00 1.00 
PATHLl 9.00 1.00 9.00 1.00 9.00 1.00 8.00 8.00 8.00 7.00 4.00 6.00 6.00 2.00 

Based on the columns of the previous table the statistic/statistic score correlation coefficients are computed: 

PEAR SPEA PCC PRCC SRC SRRC SMIR CRAM TTST TMWT SHRI SHFT HIM HIM’ 
PEAR 1.00 0.44 1.00 0.40 1.00 0.40 0.86 0.86 0.87 0.86 0.20 0.82 0.14 0.36 
SPEA ---- 1.00 0.44 0.99 0.44 0.99 0.39 0.39 0.38 0.48 0.05 0.38 0.45 0.51 

Fig. 9. Selected output from the SPOP code, Level E test case. The HIM statistic values arc 
generated as described in Figure 7. The HIM* values have been normalised by a factor equal to 
N((N + 1)/2j2. The statistic/statistic score correlation coefficients are computed by replacing the 
variable ranks in the upper table by their Savage scores, as described in Figure 8, then taking the 

linear (Pearson) correlation coefficient bctwccn columns. 

in place of the ranks is that using the scores gives greater weight to the most 
important variables (low rank) in computing the estimators’ variance. 

A computational complication is introduced by the need to compute the HIM 
estimator. As described in Section 3 this estimator needs a sample size of size 
N X (1 + K), where N is the number of runs and K is the number of variables. 

All computations are performed using the LISA package. The input matrices 
(X, and X,, j = 1, 2, . . . K in Figure 7) are generated by the PREP utility [9]. 
The output vectors <r# and q., j = 1, 2, . . . K in Figure 7) are obtained using 
different versions of the LISA code [21]. SA estimators and variance analysis are 
computed using the SPOP statistical post processor [27]. A representative 
output from SPOP is presented in Figure 9 for the Level E analysis and the 
t = 9 X lo4 time point. 

IFFD was computed in a different manner from the other SA estimators. 
Sample sets were generated by the program SAMPLE [2] based on methods 
described in [l]. Because of the structured nature of the samples, it was not 
possible to use the partitioning approach. Instead, five new samples were 
generated for each sample size. The sample sizes used were 512 and 256. 

The Level 0 results were computed using a version of the SYVAC3-LZ code 
[6], rather than LISA. The Level E part of the experiment was not carried out. 

Since IFFD ranked only the most important parameters, it was necessary to 
fabricate rankings for the rest to complete the comparison. These rankings were 
randomly generated from the unassigned ranks. That is, if IFFD ranked seven 
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Fig. 10. 

out of 22 parameters, the remaining 15 parameters would be assigned a random 
permutation of the numbers from 8 to 22. 

Because of the procedural differences from the other estimators, and the 
incomplete results, the IFFD results should be considered preliminary. Never- 
theless they were included because this estimator shows promise of good 
performance in comparison with the others. 

5. Variance analysis for the Level 0 test case 

Values of var(technique, sample size) obtained as described in Section 4 are 
given in Figure 10. The following observations can be made: 

(1) As a general trend variances decrease when increasing sample size, i.e. 
technique reproducibility increases with sample size as expected. 

(2) As described in [30] all the parametric tests yield higher variances than 
their non-parametric counterpart. This is true of PEAR with respect to SPEA, 
SRC with SRRC, PRC with PRRC and, to a reduced extent, of TTST with 
TMWT. The non-parametric tests SPEA, SRRC and PRCC are consistently 
more reproducible than their parametric equivalent. The SRRC and PRCC 
methods perform identically [16,29,30]. 

(3) The other two-sample non-parametric tests SMIR and CRAM perform 
poorly, sometimes below the parametric PCC, SRC and PEAR. 

(4) The SHRI method appears by far the worst as far as reproducibility is 
concerned. Values of var(SHR1, sample size) range between 0.64 and 0.76 and 
have not been plotted in the figure. This confirms previous work done on 
estimators based on sample variance, such as the Klotz test and the Sum of the 
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Squared Ranks test (see [5] for a description of these methods and [23] for a 
variance analysis of these estimators). 

(5) The HIM method appears to be the second worst. 
(6) The SHFT method is also poor as far as reproducibility is concerned. Its 

performance closes on that of PEAR at the highest sample sizes, but is much 
worse (higher variances) for the other sample sizes. 

The IFFD showed better performance than the other estimators, although it 
was applied at only two samples sizes. 

Figure 10 shows that the estimators SRRC and PRCC are the most repro- 
ducible over the entire sample size region explored. One might wonder why, 
then, a better method is needed. 

In fact, as shown in [29], these methods do not provide a base for ranking the 
input variables in the presence of model non-monotonicity, regardless of the 
sample size, so that the search for a better estimator is motivated by the need 
for a better accuracy rather than improved reproducibility. 

The remark that non-parametric tests based on rank are systematically better 
than their parametric equivalent based on the raw values suggests the develop- 
ment of a rank-based version of HIM. This is easily achieved if both the & and 
q vectors are replaced by their ranks before the integration for the expectation 
value (Equation 3.12 or summation in Figure 7). 

The estimator so obtained has been indicated as HIM* in Figure 10. It can 
be seen that although its performances do not challenge those of SRRC, PRCC 
and SPEA, they are close to those of the parametric tests SRC, PRC, PEAR. 

6. The Level E test case 

As mentioned in Section 2 the Level E test case displays interesting non-mono- 
tonic features which are evidenced by the multi-modal shape of the R; versus 
time curve shown in Figure 5. 

As discussed in [29] this is due to the fact that the variables which govern the 
transit time in the geosphere (and hence the dose) have a positive correlation 
with the output at early time, which becomes negative at later time. Taking 
water velocity (FLOWVl) as an example, at early times high doses are obtained 
for high water velocities (positive correlation) whereas at later times the output 
is depleted unless low values of FLOWVl are involved (negative correlation). At 
intermediate times, such as the t = 90000 y time point shown in Figure 11, a 
non-monotonic relation is evident between the rank of dose and the rank of 
FLOWVl, which results in a very low value of SRRC for FLOWVl at this time 
point. The thin horizontal line in Figure 11 represent the rank regression 
between the two variables. For this time point Rz is as low as 0.09. 

Comparing Figure 4 (Level E mean dose) with Figure 5 (R:) it can be 
inferred that the first local minimum of the Rz curve (t = 90000 y) corresponds 
exactly to the point in which the correlation between Iodine dose and FLOWVl 
passes from positive to negative (SRRC = 0.). This is confirmed by Figure 12, 
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Fig. 11. Scattcrplot of rank of dose vs rank of variable for FLOWVl at time = 9 x 104. 
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where the standard rank correlation coefficient for the variable FLOWVl is 
plotted as function of time, and by Figure 13, where the Rf coefficient is plotted 
for the Iodine and Np chain dose separately. In correspondence of the second 
local minimum of Rz (t = 700000 y, Figure 5) the SRRC for Iodine dose is 
negative, while that for Np chain dose is positive (Figure 12). This also results in 
a non-monotonic pattern between ‘rank of total dose’ and ‘rank of FLOWVl’ 
which is evidenced by the rank scatterplot for this time point. In other words 
there is a correspondence between the minima of the Rz curve and these 
non-monotonicities which escape the detection of all the rank based correla- 
tion/ regression estimators (SPEA, SRRC, PRCC . . . >. 

This phenomenon is much easier to observe in Level E, where Iodine and Np 
chain peaks are well resolved, than in Level 0, where many superimposed 
nuclides contribute to the average dose and the effect is blurred. 

The inadequacy of the rank based estimators does not depend upon the 
sample size, i.e. Rz does not increase when increasing the number of runs. 

The results of the variance analysis for Level E are shown in Figure 14. The 
partitions employed in this case are the same as for the Level 0 analysis. 

The variances for all the estimators appear to depend upon the model 
(compare Figure 10 with Figure 14). Passing from Level 0 to Level E a few 
estimators worsen in performance, i.e.: variance for PEAR, PCC, and SRC 
increase moderately (on average); the variance of SHFT increases considerably; 
for most of the tests better performances are obtained, and in particular: the 
variance of SHRI decreases slightly: values of var(SHR1, sample size) range 
between 0.60 and 0.73 (not shown in Figure 14). The variance of SPEA 
decreases appreciably; SRRC, PRCC, SMIR and CRAM show moderate de- 
creases; HIM * ‘s variance decreases considerably. 
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As a result of the HIM* reduced variance this estimator is, for Level E, the 
most reproducible at all the sample sizes, followed by SRRC, PRCC and, at 
some higher variance values, by SPEA. It can be speculated that the improved 
performance of HIM* as compared with SRRC is due to the fact that HIM* is 
not affected by model non-monotonicity as much as SRRC. In order to see if 
this is the case the Level E variance analysis has been repeated on the 
maximum doses (as for Level 0). The effect of taking the maximum of dose 
between t = 0 and the time point, rather than the dose at the time point, is of 
removing the model non-monotonicity (compare Figure 5 with Figure 6). The 
results are plotted in Figure 15. As a general trend all the estimators improve 
their performance, and the spread in results is lower. HIM* is almost unaf- 
fected whereas SRRC, PRRC and SPEA become considerably more repro- 
ducible. Evidence of the fact that the increased reproducibility of Figure 15 with 
respect to Figure 14 is due to the removal of the non-monotonicity is the fact 
the most unaffected technique is HIM *, whose predictions do not rely on 
sample monotonicity, followed by the two sample tests where also non-mono- 
tonicity plays a lesser role. 

7. Technique accuracy 

The discussion of the technique accuracy is based on the Level E test case, 
taking ‘dose at the time point’ as output variable. The analysis of the technique 
accuracy mainly relies on the knowledge of the model structure. In any specific 
application, further measures can be used to test the appropriateness of a 
technique, including: 
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l Scatterplots (as that shown in Figure 111, which highlight possible non 
monotonic trends and the degree of dependence among variables [13]. 

l Analysis of the range of applicability of tests, i.e., are the data compatible 
with the test being used? The analysis of the model coefficient of determination 
for instance indicates whether the regression model for the model output can be 
used as a basis for ranking the parameters. Especially when using stepwise 
regression [13] the PRESS (Predicted Sum of Squares) test statistics can be used 
to select among competing regression models. 

l Score correlation tables. These tables provide a measure of the agreement 
between the rankings produced by different estimators, and are computed by 
replacing the ranks (such as those plotted in Figure 11) with their Savage scores 
[15]. These latter allow the correlation between two different tests (e.g. SMIR 
and SPEA) to be computed by giving the highest weight to agreement (or 
disagreement) on the most influential variables. One such table is shown in 
Figure 9, which gives selected SA statistics for the t = 9 X lo4 time point. 

In Figure 16 the technique ranking as a function of time is plotted for 
selected estimators for the Level E test case. It can be seen that for the 
t = 9 x lo4 time point SPEA, PRCC and SMIR all fail to identify FLOWVl as 
the most influential variable, while it is still the most influential variable for 
HIM* (Figure 16). The same happens for the second local minimum of the R~J 

curve. 
The question which arises now is which estimator should be trusted more. It 

is evident that, even without using the hypothesis testing, PRCC and SRRC 
predictions should be disregarded for the low Rz points, where the regression 
model does not have predictive capability. The same can be said of SPEA, given 
that the score correlation coefficient between SPEA and SRRC is almost one. 
In fact these estimators implie a linear relationship between ranks which is not 
satisfied here. The score correlation coefficient between SMIR and PEAR for 
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Fig. 17. Scatterplot of the ranked vectors y, and 7. at time = 9 X 104. 

the f = 9 x lo4 time points is 0.86, indicating that PEAR and SMIR are 
similarly sensitive to the upper tail of the output distribution. In fact the value of 
the Rf coefficient based on the raw values for this time point is below 0.1 
(Figure 9>, indicating a poor performance of PEAR. 

The above discussion points out that the only estimator whose use is legiti- 
mate for the Level E output ‘dose at the time point’ over all the time range is 
the HIM, either in its raw or rank version. The observation that HIM* gives 
rank = 1 to the variable FLOWVl over the entire time span (Figure 16) is in 
agreement with our understanding of the model behaviour; FLOWVl controls 
the transit time in the first segment of the geosphere and is in fact the most 
influential parameter. 

The comparative effectiveness of HIM* versus SRRC/PRCC/SPEA can be 
visualised by comparing Figure 11 (rank of dose against rank of FLOWVl 
scatterplot) with the new Figure 17. What is shown here is the scatterplot of the 
two ranked vectors &, 7. used in the computation of the HIM* statistics for the 
same variable and time point as Figure 11. It is easy to see that the non-mono- 
tonic trend of Figure 11 becomes an evident monotonic trend in Figure 17. The 
thin line gives the linear regression on the points, which shows the positive 
correlation existing between the two vectors. This line should not be confused 
with the HIM * statistics; HIM* is not the correlation between r,, q, but the 
sum of the pairwise products Rank(yi) x Rank(y,,j), i = 1, 2, . . . NRUNS, as 
described in Figure 7. It can be mentioned that in the process of the optimiza- 
tion of the HIM* estimator the r,, E; rank correlation has also been attempted 
as a possible alternative to HIM*. This attempt resulted in accuracy values 
intermediate between HIM and HIM*, so that the pure rank based HIM* was 
finally retained. 
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8. Conclusions 

An analysis has been made of the performances of selected SA estimators with 
respect to two characteristics: estimator reproducibility and estimator accuracy. 
It has been shown that although existing nonparametric techniques such as the 
SRRC, PRCC and SPEA are fairly reproducible and accurate when the model 
output varies linearly or at least monotonically with each independent variable 
their accuracy becomes dubious in the presence of model non-monotonicity. 
This poses a severe limitation to their application as the existence of non-mono- 
tonic relationships within the model cannot in general be determined a priori; a 
combined study of data scatterplots and of statistics such as the model coeffi- 
cient of determination Rz is needed to identify the problem. The modified Hora 
and Iman importance measure HIM*, on the contrary, appears capable of 
overcoming the difficulties posed by model non-monotonicity. 

While HIM* demonstrates the existence of such methods, it is relatively 
expensive to apply. To carry out a HIM * analysis, even using the new technique 
described in Section 3, requires N X (1 + K) simulations, where N is the sample 
size and K is the number of variables being analyzed. For models with large 
numbers of input parameters, where SA is most needed, the cost of performing 
the simulations can be prohibitive. This was not the case with the models 
employed in the present study. 

Some preliminary results with IFFD were described in this paper because 
IFFD has been developed to analyze efficiently non-monotonic models with 
large numbers of variables. The results of the Level 0 analysis showed that IFFD 
had good reproducibility in that test case. It has not yet been applied to the 
Level E model to determine if it can deal effectively with the non-monotonic 
behaviour occurring there. The accuracy of IFFD shall be the object of further 
investigation. 
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