JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS
J. Multi-Crit. Decis. Anal. 8: 139-145 (1999)

A Role for Sensitivity Analysis in Presenting the Results from MCDA
Studies to Decision Makers

A. SALTELLI*, S. TARANTOLA" and K. CHAN?
European Commission, Joint Research Centre, Institute for Systems, Informatics and Safety (ISIS), TP 361,
21020 Ispra (VA), ltaly

ABSTRACT

The aim of sensitivity analysis (SA) is to ascertain how much the uncertainty in the output of a model is influenced
by the uncertainty in its input factors. An SA can be performed using different methods, which are classified
according to various criteria. One possible classification is that in which global and local approaches are identified.
This paper strengthens the role of global SA methods and suggests their use in the context of MCDA. Useful
applications of global SA already exist in a variety of fields where numerical models are considered, e.g. in
economics, engineering and chemistry. Global SA is quite different in its formulation and application from local
SA, which is seen more frequently in the literature. The global sensitivity indices adopted are derived from a
variance decomposition scheme: they can be estimated by alternative computational strategies, such as the
extended FAST or the method proposed by Sobol’. A truly global SA is capable of apportioning the output
uncertainty according to any subgroup of input factors. Hence, the output uncertainty of an MCDA can, for
instance, be decomposed into a part due to uncertain model inputs and a part due to poorly defined (or variable)
weights attached to the criteria. This information could be useful to the decision maker (DM) since it explains
synthetically how much the assessment of an MCDA study is biased by the assessor judgements. Alternative
regrouping of the uncertain input elements might shed light on other features of the problem addressed by the

DM. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It can be argued that an important element of
judgement in decision making is a quantitative
appreciation of the uncertainties involved, to-
gether with an indication of the likely sources of
the uncertainty. While uncertainty analysis is of-
ten seen in MCDA studies, a global sensitivity
analysis (SA) is still largely absent or rudimen-
tary, especially in commercial packages for deci-
sion analysis. Indeed, the SA we have seen
implemented in commercial packages is mostly in
the context of linear programming (e.g. simplex
method), where the purpose is to find the range of
variation for the factors that is compatible with
the dominant alternative (i.e. how much we can
change the data of a problem, with respect to a
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given baseline, without misplacing the selected
best alternative for that baseline). In the Bayesian
framework of MCDA, SA is customarily taken to
be with respect to the prior, i.e. SA is used to test
the robustness of the dominating alternative with
respect to uncertainties in the prior. Software
packages for MCDA, such as Expert Choice or
VISA, perform rather elementary SA on simple
user defined models.

An ideal SA tool in support of an MCDA
should be capable of taking several levels of un-
certainty into account globally (i.e. over the entire
problem space).

In the example discussed here we show how
uncertainty can be partitioned into model input
factors and weights (Saltelli and Scott, 1997).
Alternative regrouping of the uncertainty in the
problem could be among the so called aleatory
and epistemic sources of uncertainty (Helton and
Burmaster, 1996). In this latter case, aleatory
would refer to all uncertainty arising from intrin-
sic stochastic properties of the problem (i.e. the
time of occurrence of an earthquake), while the
epistemic would refer to our poor knowledge of

Received 8 October 1997
Accepted 1 April 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

the physical model or of its parameters (e.g. the
frequency of a Poisson law for the earthquake, see
Apostolakis, 1990). The example shown in this
paper represents a possible application of such a
decomposition.

An SA method can be termed as global if it
allows all the input factors to vary over their
range of uncertainty. In contrast, a local method
restricts the analysis to the neighbourhood of a
working point where the factors are fixed at their
nominal values and the volume of the space ex-
plored is nil. A local analysis is essentially based
on differential calculus, while a global analysis
involves multi-dimensional integrations over the
space of variation of the input factors.

Some desiderata properties, such as quantitativ-
ity or model independency, are likely to be fulfilled
when adopting a global approach. Let us consider
these two items separately. First, a method is said
to be quantitative when it is possible to apportion
the entire output variability to the input factors
without leaving some of the variability unac-
counted for. A global approach is well-suited to
be quantitative because the concept of decomposi-
tion of the output variance can be introduced.
Secondly, a global method can be suitably de-
signed to work on every kind of model, from
linear to nonadditive and nonmonotonic. For a
local approach, the concept of quantitativity is
intrinsically meaningless, a local method being
based on differential analysis. Furthermore, a lo-
cal approach can only deal with perfectly linear
models. New global SA methods, derived from
Sobol’ sensitivity indices (see Homma and Saltelli,
1996) and from the Fourier amplitude sensitivity
test (FAST) (Saltelli ez al., 1999), appear adequate
to the task for their capacity to decompose the
variance of the model response quantitatively,
accounting for 100% of the variance itself.

The SA measures illustrated here are due to the
work of the FAST school (Cukier et al., 1973,
1978; Schaibly and Schuler, 1973; Koda et al.,
1979) and to the original work in the field of
Monte Carlo methods of Sobol’ (1990). For an
exhaustive review on SA techniques, see Helton
(1993) and Saltelli ez al. (1993).

Central to both the method of Sobol’ and the
FAST, is a variance decomposition scheme, which
is also used in experimental design (Archer et al.,
1997). This scheme defines the methods to be
model independent, as no assumptions about the
structure of the underlying models are made
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(other techniques, like linear regression analysis,
work only for linear models).

In variance-based methods the influence of the
input factors is appreciated by way of fractional
contribution to the total variance. For the simple
case of a model with just three variables, the
variance D of the output can be written as

D:Dl+D2+D3+D12+D13+D23+D123

where D; is a main effect (first-order term), D, a
two-way interaction between factors i/ and j, and
so on for the higher-order terms. Dividing the
above by D, one obtains

1:Sl+S2+S3+S12+S13+S23+S123

where

For an additive model (a linear one, for in-
stance), the sum of the first-order terms is already
1. In this case, the indices coincide with what can
be obtained by regression methods (see McKay,
1995). For nonlinear models, X;S; can be very
low. While this remark stresses the importance of
determining the S, ; terms, it also poses a
problem, as in a model with K explanatory fac-
tors, the total number of terms in the decomposi-
tion is 2X—1. Given that, with the method of
Sobol’, a separate computation (composed of a
set of model evaluations) is needed for each
S ;, this may render the analysis impractica-
ble. A solution is offered by the total effect terms
(Homma and Saltelli, 1996), which for the exam-
ple above are:

ST,l :S1 + S12+ S13 +S123
Srp=8+ S+ S5+ S
ST,3 :Ss + S13 + S23 +S123

Each of the S;; can be estimated using the method

of Sobol’ with a single computation; further, by

normalizing each S; by the sum of the S, we

obtain a suitable condensed output statistics S%,,
L

STi
Ti —

Zi St

which can be drawn in cumulative plots as those
given in Figures 2 and 3.

The S;; can be evaluated either by the original
method of Sobol’ (1990), based on quasi-random
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numbers and Monte Carlo estimation of multi-
dimensional integrals, or by way of our own
extension of FAST (Saltelli ez al., 1999). The
extended FAST was seen to be computationally
more efficient than the method of Sobol’ (Taran-
tola, 1998), since the pair of indices (S,, S;;) re-
lated to the factor i can be estimated with a single
computation. Hence, using the extended FAST, K
sets of model evaluations are needed to evaluate
the pairs of indices (first-order and total effect)
for all the factors.

The basic idea behind FAST is to identify a
search-curve exploring the whole K-dimensional
space Q of uncertain factors. This curve should
cover Q completely, thus allowing the evaluation
of one-dimensional integrals (over the curve itself)
instead of multi-dimensional ones over Q. The
curve is defined by the set of parametric equations

1 1
x;(8) = §+ = arcsin(sin(w;s + ¢;)), i=1,..., K

Here s is a scalar variable varied over the range
— o0 <s< + o0, {w,} is a set of different (angu-
lar) frequencies associated with each factor x;, and
@; is a random phase shift arbitrarily chosen in
[0, 27). As s varies, all factors change simulta-
neously, systematically exploring their ranges of
uncertainty. The model f(x;, x,, ..., Xg) may be
thought of as being a one-variable function f{(s).
Expanding f(s) in a Fourier series and evaluating
its frequency spectrum it is possible to estimate
the total output variance D, by adding up the
spectral components at all the frequencies. Each
partial variance D; can also be estimated by an
oculated choice of the set of frequencies {w;}, by
adding up the spectral components of f(s) at the
w; and related higher harmonics. The ratio D,/D
is the main effect measure for factor x;, i.e. S;. The
extended FAST method also estimates the total
effects by assigning the frequencies in a proper
way. The S; for factor i can be derived from the
spectral content of f(s) at the lower bound of the
frequency domain, while the S, is estimated as in
the classical FAST by selecting w; in the upper
region of the frequency domain. All the computa-
tional details are given in the references.

Both the method proposed by Sobol’ and the
extended FAST are able to perform an SA not
only regarding single factors, but also groups of
factors, however they are clustered. The outcome
of an SA performed by groups is a total normal-
ized effect index S%,; for each group of factors.
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141

This possibility renders the Sobol’ and the ex-
tended FAST methods more attractive because
the analysis may be performed at a higher descrip-
tive level. For example, in complex models or
plants with several constituting modules or sub-
systems, the DM could be interested in decompos-
ing the model uncertainty according to subgroups
of factors, each subgroup pertaining to the vari-
ous modules or subsystems. The factors may also
be grouped according to different geographical
locations, or different logical types (actual factors,
gridding parameters, switches, ...). One interest-
ing display is likely to be one in which uncertain-
ties arising from the weights attached to the
criteria are separated from those due to the uncer-
tain model inputs.

Besides yielding further information on the
model behaviour, the results from an SA con-
ducted by groups of factors (see Figure 3) are
easier to display and interpret than those obtained
by considering the factors singularly (see Figure
2), because the number of groups cannot be
higher than the number of factors.

Let us illustrate the basic formalism for both
the method of Sobol’ and the extended FAST, in
the case in which the set Q of K factors of a given
model is partitioned into two groups, u and v,
such that u+v=K. Let D,, D, and D, , denote
the partial variances due, respectively, to the
groups u, v, and their interaction. Then

D=D,+D,+D
and, as above,
1=S,+5,+S..

178

Sr=8.+S..
Srp=28,+S..,
and

1=2S%,+ 5%,

where e.g. %, = S5../(St..+ Sp,). It is worth not-
ing that by using the extended FAST, the two
pairs of indices (S,, S%,) and (S,, S%,) can be
estimated with two sets of model evaluations.

2. PROBLEM SETTING
We shall assume in the following that the object
of our analysis is the ‘condensed’ prediction of an
MCDA study, in the form of a scalar quantity Y

whose numerical value depends on
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e a set of input factors,

e one or more models processing the informa-
tion for the various pre-established criteria,
and

® a series of weights attached to the criteria.

Usually there are several values of the output ¥
corresponding to the various options being con-
sidered, but we focus on the value for a single
option, formally defined by Equations (1) and (2)
in the next section. We argue that if it is possible
to characterize rigorously the sensitivity of Y,
then all ancillary types of analysis (e.g. robustness
with respect to the ordering of the options, and of
the selection of the criteria) can be performed
easily. We shall further assume that a proper
quantification of the uncertainty in the model
output, Y, is its variance, estimated within the
modelling process. Thus, the problem reduces to
an effective variance decomposition scheme. The
outcome of an SA, i.e. the set of the S%,, could be
in the form of a pie-chart, the area of the ith
sector being proportional to the value of S%..
When performing an SA by groups, a pie-chart
displaying the S%, for each group can also be
obtained. If the model output is time-dependent,
such as in the example illustrated in the present
work, then a pie-chart for each time point is
needed. Condensed pictures for time-dependent
outputs can be obtained by graphical representa-
tions like those given in Figures 2 and 3, where
each pie-chart is represented by a vertical section
line bounded between 0 and 1, and the areas of
the various sectors within a given pie-chart can be
identified by the length of the segments constitut-
ing the vertical line. Two important technicalities
must be highlighted here:

1. Such variance decomposition was impossible,
except for linear or at least additive models,
before the new SA techniques were intro-
duced, and

2. For complex MCDA with many uncertain
inputs, the output may be hard to interpret.

Point (1) is evident to analysts familiar with
regression techniques. Using for instance, as a
measure of model sensitivity, the standardized
regression coefficients (SRC), one can partition
prediction variance quantitatively, but only for
that part of it which is explained by the regression
model (and is quantified by the model coefficient
of determination). For nonlinear, nonadditive
models this decomposable part may be uncom-
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fortably small. Point (2) refers to the fact that a
decision maker may have limited interest in a
crowded diagram showing how the uncertainty in
Y is parcelled among several factors constituting
the model (e.g. 14 as depicted in Figure 2). This
problem can be easily overcome by performing an
SA by groups, so that the results are easier to
interpret (see Figure 3).

3. THE ANALYSIS

A very simple didactic test case has been selected:
the Bateman equations, which describe a simple
chemical or radioactive chain where each cle-
ment’s growth rate is directly proportional to the
father concentration, and each element’s decay
rate 4; is proportional to the concentration of the
element itself. The last element of the chain is
assumed stable, i.e. 1, =0. The set of Bateman
equations is:

dcC

o= G

dC

—d;: — LG+ 4G 0))
dC

d_tN: /1N—1CN—1

whose solution is

i i—1

Ci(n) = Zl o 11
m= r=mm#£i
i e—lnt

A Y

e nfzm,m #“il#n (21 - ﬂ-n)

Here J; and C? are, respectively, the decay rate
and the initial concentration of species i. The
model output has been defined as

N

Y(1) = *21 w,Cy(¢) (2)
For each time point, in a prescribed range, we
have computed the concentrations, C;(¢), for a
system of N species. The concentrations have then
been averaged by means of weights w,, as if each
species i were a different risk criterion, and the
weights were to reflect the assessor’s belief on the
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Table I. List of input factors and their pdfs for the test case defined by Equations (1)

and (2)

Factor Definition Range Units

wy Weight 1 /1, 10/ risk/mole
1128 Weight 2 /100, 200/ risk/mole
ws Weight 3 /1, 5/ risk/mole
Wy Weight 4 /1, 10/ risk/mole
Ws Weight 5 /1, 10/ risk/mole
s Initial concentration 1 /0, 15/ moles
3 Initial concentration 2 /0, 10/ moles
Y Initial concentration 3 /0, 10/ moles
3 Initial concentration 4 /0, 10/ moles

C? Initial concentration 5 /0, 10/ moles

A Decay rate 1 /1.24x 1078, 8.24 x 10~5/ 1/s

A Decay rate 2 J1.0x 1077, 1.0x 1074/ 1/s

A3 Decay rate 3 /9.0x 1077, 1.0x 1074/ 1/s

s Decay rate 4 /20x107%, 3.0x 1073/ 1/s

danger/importance of the criterion. The model
output, Y, can be considered as an index of the
risk to the population due to the system of N
species. Y is driven by the following uncertain
parameters:

® N weights w,
® N initial concentrations C?
® N —1 decay rates 4,

where N (N=35 in our example) indicates the
number of species in the chain, so that the system
has 14 uncertain input factors. The weights are
typically given by expert judgement.

Both the initial concentrations and the decay
rates are supposed to be poorly known factors,
which constitute our parametric uncertainty.
Ranges and distributions for the 14 factors are
depicted in Table I.

A first analysis was conducted by evaluating
the first-order (no interactions) sensitivity indices
for all 14 factors (rates, concentrations, weights).
It can be noted that the first-order indices (Figure
1) add up to 1 for times up to about 5 x 10° s,
identifying the time range where the model is fully
additive. For this time range even an analysis
based on classical FAST, or perhaps on the SRCs,
would be adequate. At later times, the sum drops
to values below 0.6, pointing out that a large
fraction of the output variance can not be ex-
plained using only the main effect indices. The
model loses its additive properties there and this is
due to the intervention of the decay parameters. It

Copyright © 1999 John Wiley & Sons, Ltd.

should be stressed that we are using a very simple
model; in real applications, the additivity of mod-
els can be much lower (Saltelli ez al., 1999).

inteveuiions

EEGNEN]

Figure 1. The extended FAST has been employed to
evaluate the first-order indices for all 14 factors as a
function of time. The computation requires 257 x 14 =
3598 model evaluations (the same set can be used to
evaluate the total indices). The sum of the first-order
indices is displayed. It can be noted that the model is
perfectly additive up to 2 x 10° s, hence first-order
indices yield all the information. Afterwards, the sum
drops down to 0.6-0.8 due to nonadditive effects, thus
implying the use of the total indices in order to perform
a quantitative analysis
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Figure 2. The extended FAST has been employed to
evaluate the total normalized sensitivity indices for all
14 factors as a function of time. The computation
requires 257 x 14 = 3598 model evaluations. The total
normalized indices are displayed in a cumulative plot. It
can be noted that the most predominating factors are
W3, W4, C9 and C§ up to 10 s; 4; and 4, can be
considered as the driving factors in the time interval
(107-10%)s, (they account for about 70% of the output
variance); beyond 10® s, when the transient ends and
the model loses its additivity properties, all the factors
tend to become equally important

An analysis of the total normalized sensitivity
indices has then been performed (Figure 2); from
this figure it is clear why the model is additive till
5x 10° s, as this is the area where weights and
initial concentrations dominate the total variance.
Even for this very simple model with just 14
uncertain factors, Figure 2 is difficult to read
(only the most important factors have been la-
belled). By regrouping the terms as described in
the previous section, we obtain Figure 3. This
figure has two important properties:

1. Tt is quantitative, i.e. the fractional contribu-
tion to the total variance is not the result of an
approximation; 100% of the output variance is
accounted for.

2. The figure has a clear appeal for simplicity.
Two logically distinct classes of uncertainty
have been effectively evaluated and displayed.

4. CONCLUSIONS

In summary, the extended FAST enables the ana-
lyst to display concisely the information needed

Copyright © 1999 John Wiley & Sons, Ltd.

Figure 3. The extended FAST has been employed to
evaluate the total normalized sensitivity indices for two
groups of factors (model parameters and weights) as a
function of time. The computation requires 257 x 2 =
514 model evaluations. The total indices for the two
groups are displayed in a cumulative plot. It can be
noted that after 10° s the overall importance due to the
weights oscillates between 20 and 30%

by a decision maker. The measure is quantitative
and exhaustive; it includes all contributions to the
output variance, i.e. both additive and nonaddi-
tive effects. The measure shows clearly and syn-
thetically how much the assessment is biased by
uncertainties in this or that domain. In the exam-
ple offered here, we investigated the relative im-
portance of the assessor belief, i.e. we showed
(Figure 3) that the analysis is more robust for
times after 10¢ s, where the overall contribution of
the weights falls below 20-30%. It might be ar-
gued, in conclusion, that the variance decomposi-
tion as shown in the present note could become a
prescription for MCDA studies and for the pre-
sentation of their results.
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